【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)如圖1,當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說理由;若不變,求出它的度數(shù).
(3)如圖2,若點P、Q在分別運動到點B和點C后,繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC=度.(直接填寫度數(shù))
【答案】
(1)證明:∵△ABC是等邊三角形
∴∠ABQ=∠CAP,AB=CA,
又∵點P、Q運動速度相同,
∴AP=BQ,
在△ABQ與△CAP中,
,
∴△ABQ≌△CAP(SAS)
(2)解:點P、Q在運動的過程中,∠QMC不變.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠QMC=∠BAQ+∠MAC=∠BAC=60°
(3)120
【解析】解:(3)∵△ABQ≌△CAP, ∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.
故答案為:120°.
(1)根據(jù)等邊三角形的性質(zhì),利用SAS證明△ABQ≌△CAP;(2)由△ABQ≌△CAP根據(jù)全等三角形的性質(zhì)可得∠BAQ=∠ACP,從而得到∠QMC=60°;(3)由△ABQ≌△CAP根據(jù)全等三角形的性質(zhì)可得∠BAQ=∠ACP,從而得到∠QMC=120°.
科目:初中數(shù)學 來源: 題型:
【題目】一元二次方程x2+x﹣3=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例反數(shù)y=(x>0)的圖象如圖所示,點B在圖象上,連接OB并延長到點A,使AB=OB,過點A作AC∥y軸交y=(x>0)的圖象于點C,連接BC、OC,S△BOC=3,則k= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P、Q是反比例函數(shù)y= 圖像上的兩點,PA⊥y軸于點A,QN⊥x軸于點N,作PM⊥x軸于點M,QB⊥y軸于點B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△ECD都是等邊三角形,AB≠EC,下列結論中:①BE=AD;②∠BOD=120°;③OA=OD.正確的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行駛過程中,汽車離開A城的距離y(km)與行駛時間t(h)的函數(shù)圖象如圖所示,下列說法正確的有( )
①甲車的速度為50km/h ②乙車用了3h到達B城
③甲車出發(fā)4h時,乙車追上甲車 ④乙車出發(fā)后經(jīng)過1h或3h兩車相距50km.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關系和位置關系,并加以證明;
(3)在平移變換過程中,設y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關系式,并求出y的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com