【題目】如圖,直線AB與CD相交于點O,OD平分∠BOE,∠FOD=90°,問OF是∠AOE的平分線嗎?請你補充完整小紅的解答過程.
探究:
(1)當∠BOE=70°時,
∠BOD=∠DOE=,
∠EOF=90°﹣∠DOE= °,
而∠AOF+∠FOD+∠BOD=180°,
所以∠AOF+∠BOD=180°﹣∠FOD=90°,
所以∠AOF=90°﹣∠BOD= °,
所以∠EOF=∠AOF,OF是∠AOE的平分線.
(2)參考上面(1)的解答過程,請你證明,當∠BOE為任意角度時,OF是∠AOE的平分線.
(3)直接寫出與∠AOF互余的所有角.
【答案】(1)55;55;(2)見解析;(3)與∠AOF互余的角有:∠AOC,∠BOD,∠DOE.
【解析】
試題分析:(1)根據(jù)題意、結(jié)合圖形填空即可;
(2)根據(jù)角平分線的定義和余角的性質(zhì)證明∠AOF=∠FOE,證明結(jié)論;
(3)根據(jù)余角的定義解答即可.
解:(1)當∠BOE=70°時,
∠BOD=∠DOE=,
∠EOF=90°﹣∠DOE=55°,
而∠AOF+∠FOD+∠BOD=180°,
所以∠AOF+∠BOD=180°﹣∠FOD=90°,
所以∠AOF=90°﹣∠BOD=55°,
所以∠EOF=∠AOF,OF是∠AOE的平分線,
故答案為:55;55;
(2)∵OD平分∠BOE,
∴∠BOD=∠DOE=∠BOE,
∵∠FOD=90°,
∴∠AOF+∠BOD=90°,∠EOF+∠EOD=90°,
∴∠AOF=∠FOE,即OF是∠AOE的平分線;
(3)與∠AOF互余的角有:∠AOC,∠BOD,∠DOE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點,E是AB上一點,連接CF、EF,且CF=EF.
(1)若∠CFD=55°,求∠BCD的度數(shù);
(2)求證:∠EFC=2∠CFD;
(3)求證:CE⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南方A市欲將一批容易變質(zhì)的水果運往B市銷售,若有飛機、火車、汽車三種運輸方式,現(xiàn)只選擇其中一種,這三種運輸方式的主要參考數(shù)據(jù)如下表所示:
運輸工具 | 途中速度(km/h) | 途中費用(元/km) | 裝卸費用(元) | 裝卸時間 |
飛機 | 200 | 16 | 1000 | 2 |
火車 | 100 | 4 | 2000 | 4 |
汽車 | 50 | 8 | 1000 | 2 |
若這批水果在運輸(包括裝卸)過程中的損耗為200元/h,記A、B兩市間的距離為xkm.
(1)如果用W1、W2、W3分別表示使用飛機、火車、汽車運輸時的總支出費用(包括損耗),求W1、W2、W3與x間的關系式;
(2)當x=250時,應采用哪種運輸方式,才使運輸時的總支出費用最小?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省邵陽市第12題)學校射擊隊計劃從甲、乙兩人中選拔一人參加運動會射擊比賽,在選拔過程中,每人射擊10次,計算他們的平均成績及方差如下表:
選手 | 甲 | 乙 |
平均數(shù)(環(huán)) | 9.5 | 9.5 |
方差 | 0.035 | 0.015 |
請你根據(jù)上表中的數(shù)據(jù)選一人參加比賽,最適合的人選是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形紙片ABCD,AB=8,AD=6,將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AE與BC的交點為F,則△CEF的面積為( )
A. B. C.2 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用如圖所示形狀的甲、乙兩個框,都能框住某月日歷表中的四個數(shù),設被框住的四個數(shù)中:甲框住的最小的數(shù)為a;乙框住的最小的數(shù)為b.
(1)用a和b分別表示甲和乙框住的四個數(shù)的和;
(2)若a=b,求甲框住的四個數(shù)的和比乙框住的四個數(shù)的和大多少?
(3)甲框住的四個數(shù)的和能是48嗎?乙呢?如能,求出a、b的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E為BC上一點,DF⊥AE于F.
(1)△ABE與△ADF相似嗎?請說明理由.
(2)若AB=6,AD=12,BE=8,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com