【題目】如圖,直線ABCD相交于點(diǎn)O,∠AOE=90°.

1)如圖1,若OC平分∠AOE,求∠AOD的度數(shù);

2)如圖2,若∠BOC=4FOB,且OE平分∠FOC,求∠EOF的度數(shù).

【答案】1135°;(254°

【解析】

1)利用OC平分∠AOE,可得∠AOCAOE×90°45°,再利用∠AOC+AOD=180°,即可得出.

2)由∠BOC=4FOB,設(shè)∠FOB=x°,∠BOC=4x°,可得∠COF=COB-BOF=3x°,根據(jù)OE平分∠COF,可得∠COE=EOF=COF=,即可得出.

1)∵∠AOE=90°,OC平分∠AOE

∴∠AOCAOE×90°45°,

∵∠AOC+AOD=180°,

∴∠AOD=180°-AOC=180°-45°=135°,

即∠AOD的度數(shù)為135°

2)∵∠BOC=4FOB,

∴設(shè)∠FOB=x°,∠BOC=4x°

∴∠COF=COB-BOF

=4x°-x°=3x°

OE平分∠COF

∴∠COE=EOF=COF=

x+x90°

x=36,

∴∠EOF=x°=×36°54°

即∠EOF的度數(shù)為54°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB,點(diǎn)C在直線AB上,D為線段BC的中點(diǎn).

1)若AB8 ,AC2,求線段CD的長.

2)若點(diǎn)E是線段AC的中點(diǎn),直接寫出線段DEAB的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索新知)如圖1,點(diǎn)C將線段AB分成ACBC兩部分,若BCπAC,則稱點(diǎn)C是線段AB的圓周率點(diǎn),線段AC、BC稱作互為圓周率伴侶線段.

1)若AC3,則AB ;

2)若點(diǎn)D也是圖1中線段AB的圓周率點(diǎn)(不同于C點(diǎn)),則AC DB

(深入研究)如圖2,現(xiàn)有一個直徑為1個單位長度的圓片,將圓片上的某點(diǎn)與數(shù)軸上表示1的點(diǎn)重合,并把圓片沿數(shù)軸向右無滑動地滾動1周,該點(diǎn)到達(dá)點(diǎn)C的位置.

3)若點(diǎn)M、N均為線段OC的圓周率點(diǎn),求線段MN的長度.

4)圖2中,若點(diǎn)D在射線OC上,且線段CD與以O、CD中某兩個點(diǎn)為端點(diǎn)的線段互為圓周率伴侶線段,請直接寫出點(diǎn)D所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在結(jié)束了380課時初中階段數(shù)學(xué)內(nèi)容的教學(xué)后,唐老師計劃安排60課時用于總復(fù)習(xí),根據(jù)數(shù)學(xué)內(nèi)容所占課時比例,繪制如下統(tǒng)計圖表(圖1~圖3),請根據(jù)圖表提供的信息,回答下列問題:

(1)圖1統(tǒng)計與概率所在扇形的圓心角為   度;

(2)圖2、3中的a=   ,b=   ;

(3)在60課時的總復(fù)習(xí)中,唐老師應(yīng)安排多少課時復(fù)習(xí)數(shù)與代數(shù)內(nèi)容?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的兩個頂點(diǎn)A、B的坐標(biāo)分別

1)求對角線AC所在的直線的函數(shù)表達(dá)式;

2)把矩形OABCAC所在的直線為對稱軸翻折,點(diǎn)O落在平面上的點(diǎn)D處,求點(diǎn)D的坐標(biāo);

3)在平面內(nèi)是否存在點(diǎn)P,使得以A、O、D、P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A點(diǎn)表示的數(shù)是﹣2,B點(diǎn)表示的數(shù)是5,C點(diǎn)表示的數(shù)是10.

(1)若要使AC兩點(diǎn)所表示的數(shù)是一對相反數(shù),則“原點(diǎn)”表示的數(shù)是:   

(2)若此時恰有一只老鼠在B點(diǎn),一只小貓在C點(diǎn),老鼠發(fā)現(xiàn)小貓后立即以每秒一個單位的速度向點(diǎn)A方向逃跑,小貓隨即以每秒兩個單位的速度追擊.

在小貓未抓住老鼠前,用時間t(秒)的代數(shù)式表示老鼠和小貓在移動過程中分別與點(diǎn)A之間的距離;

小貓逮住老鼠時的“位置”恰好在   ,求時間t

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCCDAD4,∠DAB=∠B=∠C=∠D90°,EF分別是邊BC,CD上的點(diǎn),且CEBCFCD的中點(diǎn),問AEF是什么三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達(dá)小島C處,將人員撤離到位于碼頭A正東方向的碼頭B,測得小島C位于碼頭B的北偏西53°方向,求碼頭A與碼頭B的距離.【參考數(shù)據(jù):sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教師節(jié)當(dāng)天,出租車司機(jī)小王在東西向的街道上免費(fèi)接送教師,規(guī)定向東為正,向西為負(fù),當(dāng)天出租車的行程如下(單位:千米)

,,,,,,,

1)將最后一名老師送到目的地時,小王距出發(fā)地多少千米?

2)若汽車耗油量為0.5/千米,則當(dāng)天耗油多少升?若汽油價格為6.70/升,則小王共花費(fèi)了多少元錢?

查看答案和解析>>

同步練習(xí)冊答案