【題目】一個矩形的長為a,寬為b(a>0,b>0),則矩形的面積為ab.代數(shù)式xy(x>0,y>0)可以看作是邊長為x和y的矩形的面積.我們可以由此解一元二次方程:x2+x﹣6=0(x>0).具體過程如下:
①方程變形為x(x+1)=6.
②畫四個邊長為x+1、x的矩形如圖放置;
③由面積關(guān)系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
參照上述方法求關(guān)于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:畫出示意圖,標(biāo)注相關(guān)線段的長度,寫出解題步驟)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標(biāo)系中求拋物線的解析式。
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桌面上放有張卡片,正面分別標(biāo)有數(shù)字,,,.這些卡片除數(shù)字外完全相同,把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍反面朝上放回洗勻,乙也從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.
請用列表或畫樹狀圖的方法求兩數(shù)之和為的概率;
若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為時,甲勝;當(dāng)兩數(shù)之和不為時,則乙勝.若甲勝一次得分,誰先達(dá)到分為勝.那么乙勝一次得多少分,這個游戲?qū)﹄p方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1:在四邊形ABCD中,AB=AD,∠BAD=120 ,∠B=∠ADC=90°.E、F分別是 BC,CD 上的點。且∠EAF=60° . 探究圖中線段BE,EF,FD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問題的方法是,延長 FD 到點 G,使 DG=BE,連結(jié) AG,先證明△ABE≌△ADG, 再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________;
探索延伸:如圖2,若四邊形ABCD中,AB=AD,∠B+∠D=180° .E,F 分別是 BC,CD 上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東 70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以55 海里/小時的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時的速度前進(jìn)2小時后, 指揮中心觀測到甲、乙兩艦艇分別到達(dá) E,F 處,且兩艦艇之間的夾角為70° ,試求此時兩艦 艇之間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷
A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為米.
(1)求矩形的面積(用表示,單位:平方米)與邊(用表示,單位:米)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?
(2)如何圍,可使此矩形花壇面積是平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點,且AE=BC,∠1=∠2.
(1)Rt△ADE與Rt△BEC全等嗎?并說明理由;
(2)△CDE是不是直角三角形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com