【題目】四季水果店正準(zhǔn)備促銷廣西脆皮桔和山東煙臺(tái)紅富士蘋(píng)果,已知脆皮桔的進(jìn)價(jià)為12元/千克,售價(jià)為24元/千克,紅富士蘋(píng)果的進(jìn)價(jià)為10元/千克,售價(jià)為20元/千克,第一天該店銷售兩種水果共獲利1156元,其中脆皮桔的銷量比紅富士蘋(píng)果銷量的4倍少10千克.

(1)求第一天這兩種水果的銷量分別是多少千克?

(2)該店在第一天的售價(jià)基礎(chǔ)上銷售一段時(shí)間后,天氣突然變冷不利于脆皮桔的保存,為了更好的銷售這兩種水果,店主決定對(duì)脆皮桔在原來(lái)售價(jià)基礎(chǔ)上降價(jià)a%,銷量在原有基礎(chǔ)上增加a%,“紅富士蘋(píng)果在原來(lái)售價(jià)基礎(chǔ)上提升a%,銷量比原來(lái)上升了30千克,其中兩種水果的進(jìn)價(jià)均不變,結(jié)果每天獲利比原來(lái)多300元,求a的值.

【答案】(1)脆皮橘銷量為78千克,蘋(píng)果為22千克;(2).

【解析】

(1)設(shè)銷售紅富士蘋(píng)果”x千克,則脆皮桔的銷量為千克,根據(jù)該店銷售兩種水果共獲利1156元,列出方程解決問(wèn)題;
(2)根據(jù)每天獲利比原來(lái)多300元列出方程解決問(wèn)題即可.

解:(1)設(shè)銷售紅富士蘋(píng)果”x千克,

由題可知:

解得:,4x-10=78,

所以脆皮橘銷量為78千克,蘋(píng)果為22千克;

(2)由題可知:

解得:(),

答:a的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的頂點(diǎn)為,與軸的一個(gè)交點(diǎn)在點(diǎn)(-3, 0)和(-2 ,0)之間,其部分圖象如圖,則以下結(jié)論:①<0;②<0;③=2;④方程有兩個(gè)相等的實(shí)數(shù)根,其中正確結(jié)論的個(gè)數(shù)為________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示的正方形網(wǎng)格中每個(gè)網(wǎng)格的單位長(zhǎng)度為1,ABC的頂點(diǎn)均在格點(diǎn)上,根據(jù)所給的平面直角坐標(biāo)系解答下列問(wèn)題

(1)A點(diǎn)的坐標(biāo)為________;B點(diǎn)的坐標(biāo)為________;C點(diǎn)的坐標(biāo)為________.

(2)將點(diǎn)A、BC的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,分別得點(diǎn)A'、B'、C',并連接A'、B'、C'A' B' C',請(qǐng)畫(huà)出A' B' C'.

(3)A' B' C'ABC的位置關(guān)系是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).

(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.

(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD

面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACABCD的對(duì)角線,在AD邊上取一點(diǎn)F,連接BFAC于點(diǎn)E,并延長(zhǎng)BFCD的延長(zhǎng)線于點(diǎn)G

(1)若∠ABF=∠ACF,求證:CE2EFEG;

(2)若DGDCBE=6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對(duì)角線,E是邊AD上一點(diǎn),BE⊥AC交AC于點(diǎn)F,BE、CD的延長(zhǎng)線交于點(diǎn)G,且∠ABE=∠CAD.

(1)求證:四邊形ABCD是矩形;

(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3),反比例函數(shù)y= (k>0)的圖象經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.

(1)求反比例函數(shù)的表達(dá)式及點(diǎn)E的坐標(biāo);

(2)點(diǎn)FOC邊上一點(diǎn),FBCDEB,求點(diǎn)F的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,點(diǎn)Cy軸的正半軸上,OA=5,OC=4.

(1)如圖①,在AB上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo);

(2)如圖②,若OE上有一動(dòng)點(diǎn)P(不與O,E重合),從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿OE方向向點(diǎn)E勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5),過(guò)點(diǎn)PPMOEOD于點(diǎn)M,連接ME,求當(dāng)t為何值時(shí),以點(diǎn)P、M、E為頂點(diǎn)的三角形與△ODA相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案