【題目】如圖,設 A 是由n×n 個有理數(shù)組成的n n 列的數(shù)表, 其中aij i,j =123,n )表示位于第i 行第 j 列的數(shù),且aij 取值為 1 或-1.

a

a

a

a

a

a

a

a

a

對于數(shù)表 A 給出如下定義:記 xi 為數(shù)表 A 的第i 行各數(shù)之積,y j 為數(shù)表 A 的第 j 列各數(shù)之積.S = (x1+ x2++ x)+(y1+ y2+ y),將S 稱為數(shù)表 A 積和”.

1)當n = 4 時,對如下數(shù)表 A,求該數(shù)表的積和S 的值;

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2)是否存在一個 3×3 的數(shù)表 A,使得該數(shù)表的積和S =0 ?并說明理由;

3)當n =10 時,直接寫出數(shù)表 A 積和S 的所有可能的取值.

【答案】10;(2)不存在;(316,12,8,0,-4,-8,-12-16,-20

【解析】

1)根據(jù)已知條件直接求解即可;

2)不存在AS3,3),使得S =0.可用反證法證明假設存在,得出矛盾,從而證明結論;

3)根據(jù)已知條件求出lA)關于ASn,n),(k=0,1,2,…,n)的關系式然后代入求值即可.

解:由題意得:(1S4 = (x1+ x2+x3+ x4)+(y1+ y2+y3+ y4)=(1-1+1+1)+(-1-1+1-1)=0

(2)不存在A∈S(3,3),使得S=0.
證明如下:
假設存在AS3,3),使得S=0
因為xiA)∈{1,-1}yjA)∈{1,-1},(i,j=12,3),
所以x1A),,x3A);y1A),,y3A),這9個數(shù)中有31,3-1
M=x1A…x3Ay1A…y3A).
一方面,由于這9個數(shù)中有313-1,從而M=-1
另一方面,x1A…x3A)表示數(shù)表中所有元素之積(記這9個實數(shù)之積為m);y1A…y9A)也表示m,從而M=m2=1
①、②相矛盾,從而不存在AS3,3),使得S=lA=0

(3)i)對數(shù)表A0aiji,j=1,2,3,…,n),顯然lA0=2n
將數(shù)表A0中的a111變?yōu)?/span>-1,得到數(shù)表A1,顯然lA1=2n-4
將數(shù)表A1中的a221變?yōu)?/span>-1,得到數(shù)表A2,顯然lA2=2n-8
依此類推,將數(shù)表Ai-1中的akk1變?yōu)?/span>-1,得到數(shù)表Ak
即數(shù)表Ak滿足:a11=a22==akk=-11kn),其余aij=1
r1A=r2A==rkA=-1C1A=C2A==CkA=-1
lAk=2[-1)×k+n-k]=2n-4k,其中k=1,2,…,n

n =10 時,數(shù)表 A 積和S 的所有可能的取值為:16,12,8,0,-4-8,-12,-16-20.

故答案為:(10;(2)不存在;(3161280,-4,-8-12,-16,-20.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=BC,BEAC于點EADBC于點D,∠BAD=45°,ADBE交于點F,連接CF.

(1)求證:BF=2AE;(2)若CD=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,△ADG和△AED的面積分別為4028,則△EDF的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地特色農產品在國際市場上頗具競爭力,其中綠色蔬菜遠銷日本和韓國等地上市時,若按市場價格10千克在新區(qū)收購了2000千克綠色蔬菜存放入冷庫中據(jù)預測,綠色蔬菜的市場價格每天每千克將上漲元,但冷庫存放這批綠色蔬菜時每天需要支出各種費用合計340元,而且綠色蔬菜在冷庫中最多保存110天,同時,平均每天有6千克的綠色蔬菜損壞不能出售.

若存放x天后,將這批綠色蔬菜一次性出售,設這批綠色蔬菜的銷售總金額為y元,試寫出yx之間的函數(shù)關系式.

這批綠色蔬菜存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,已知點的坐標,過點作軸,垂足為點,過點作直線軸,點從點出發(fā)在軸上沿著軸的正方向運動.

1)當點運動到點處,過點的垂線交直線于點,證明,并求此時點的坐標;

2)點是直線上的動點,問是否存在點,使得以為頂點的三角形和全等,若存在求點的坐標以及此時對應的點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為  

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,AE平分∠BADBC邊于E,EFAECD邊于F,延長BA到點G,使AG=CF,連接GF,若BC=7,DF=3AE=,則GF的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)風力資源豐富,為了實現(xiàn)低碳環(huán)保,該鄉(xiāng)鎮(zhèn)決定開展風力發(fā)電,打算購買10臺風力發(fā)電機組.現(xiàn)有A,B兩種型號機組,其中A型機組價格為12萬元/臺,月均發(fā)電量為2.4kwh;B型機組價格為10萬元/臺,月均發(fā)電量為2kwh.經預算該鄉(xiāng)鎮(zhèn)用于購買風力發(fā)電機組的資金不高于105萬元.

1)請你為該鄉(xiāng)鎮(zhèn)設計幾種購買方案;

2)如果該鄉(xiāng)鎮(zhèn)用電量不低于20.4kwh/月,為了節(jié)省資金,應選擇那種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,ACBC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關系為

查看答案和解析>>

同步練習冊答案