將拋物線-1的圖像向左平移2個單位,再向上平移1個單位,所得拋物線         .
y=2(x+2)2

試題分析:直接根據(jù)“上加下減、左加右減”的原則進行解答即可.
由“左加右減”的原則可知,二次函數(shù)y=2x2-1的圖象向左平移2個單位得到y(tǒng)=2(x+2)2-1,
由“上加下減”的原則可知,將二次函數(shù)y=2(x+2)2-1的圖象向上平移1個單位可得到函數(shù)y=(x+2)2-1+1
即y=2(x+2)2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x²+bx+c與直線y=x-1交于A、B兩點.點A的橫坐標(biāo)為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時,;
(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標(biāo)原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉(zhuǎn)90°,點A對應(yīng)點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的一元二次方程
(1)求證:方程總有兩個實數(shù)根;
(2)若m為整數(shù),當(dāng)此方程有兩個互不相等的負整數(shù)根時,求m的值;
(3)在(2)的條件下,設(shè)拋物線與x軸交點為A、B(點B在點A的右側(cè)),與y軸交于點C.點O為坐標(biāo)原點,點P在直線BC上,且OP=BC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線與x軸交于點A(-2,0)和點B,與y軸交于點C(0,),線段AC上有一動點P從點A出發(fā),以每秒1個單位長度的速度向點C移動,線段AB上有另一個動點Q從點B出發(fā),以每秒2個單位長度的速度向點A移動,兩動點同時出發(fā),設(shè)運動時間為t秒.
(1)求該拋物線的解析式;
(2)在整個運動過程中,是否存在某一時刻,使得以A,P,Q為頂點的三角形與△AOC相似?如果存在,請求出對應(yīng)的t的值;如果不存在,請說明理由.
(3)在y軸上有兩點M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應(yīng)的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果將拋物線向下平移3個單位,那么所得新拋物線的表達式是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知的圖象如圖所示,其對稱軸為直線x=-1,與x軸的一個交點為(1,0),與y軸的交點在(0,2)與(0,3)之間(不包含端點),則下列結(jié)論正確的是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)y =ax²(a≠0)與直線y =2x-3的圖像交于點(1,b).
求:(1)a和b的值;
(2)求拋物線y =ax²的開口方向、對稱軸、頂點坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

為搞好環(huán)保,某公司準(zhǔn)備修建一個長方體的污水處理池,池底矩形的周長為100 m,則池底的最大面積是(  )
A.600 m2B.625 m2C.650 m2D.675 m2

查看答案和解析>>

同步練習(xí)冊答案