【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,在地面上,支架是底邊為的等腰直角三角形,擺動(dòng)臂長可繞點(diǎn)旋轉(zhuǎn),擺動(dòng)臂可繞點(diǎn)旋轉(zhuǎn),.

1)在旋轉(zhuǎn)過程中:

①當(dāng)三點(diǎn)在同一直線上時(shí),求的長;

②當(dāng)三點(diǎn)在同一直角三角形的頂點(diǎn)時(shí),求的長.

2)若擺動(dòng)臂順時(shí)針旋轉(zhuǎn),點(diǎn)的位置由外的點(diǎn)轉(zhuǎn)到其內(nèi)的點(diǎn)處,連結(jié),如圖2,此時(shí),,求的長.

【答案】1,或;;(2.

【解析】

1)①分兩種情形分別求解即可.

②顯然∠MAD不能為直角.當(dāng)∠AMD為直角時(shí),根據(jù)AM2=AD2-DM2,計(jì)算即可,當(dāng)∠ADM=90°時(shí),根據(jù)AM2=AD2+DM2,計(jì)算即可.

2)連接CD.首先利用勾股定理求出CD1,再利用全等三角形的性質(zhì)證明BD2=CD1即可.

1)①,或.

②顯然不能為直角,

當(dāng)為直角時(shí),

,∴.

當(dāng)為直角時(shí),

,∴.

2)連結(jié)

由題意得,,

,

又∵,∴,

.

,

,

.

又∵,∴,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形DEFG中,DG2DE3,RtABC中,∠ACB90°,CACB2,FG,BC的延長線相交于點(diǎn)O,且FGBC,OG2,OC4.將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α0°≤α180°)得到△ABC′.

1)當(dāng)α30°時(shí),求點(diǎn)C′到直線OF的距離.

2)在圖1中,取AB′的中點(diǎn)P,連結(jié)CP,如圖2

當(dāng)CP與矩形DEFG的一條邊平行時(shí),求點(diǎn)C′到直線DE的距離.

當(dāng)線段AP與矩形DEFG的邊有且只有一個(gè)交點(diǎn)時(shí),求該交點(diǎn)到直線DG的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象與x軸交于A,B兩點(diǎn),與y軸正半軸交于點(diǎn)C,它的對稱軸為直線x=﹣1.則下列選項(xiàng)中正確的是(  )

A.abc0B.4acb20

C.ca0D.當(dāng)x=﹣n22n為實(shí)數(shù))時(shí),yc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購買會(huì)員證,會(huì)員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購買會(huì)員證,每次游泳需付費(fèi)20元.

1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?

2)若乙計(jì)劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為6,點(diǎn),分別在,上,,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,、分別為、的中點(diǎn),連接,交于點(diǎn),將沿對折,得到,延長延長線于點(diǎn),下列4個(gè)結(jié)論:①;②;③;④;正確的結(jié)論有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與A、B重合),D為的中點(diǎn),過點(diǎn)D作弦DEABF,PBA延長線上一點(diǎn),且∠PEA=∠B

1)求證:PE是⊙O的切線;

2)連接CADE相交于點(diǎn)G,CA的延長線交PEH,求證:HEHG;

3)若tanP,試求的值.

查看答案和解析>>

同步練習(xí)冊答案