【題目】如圖,一次函數(shù)的圖象與軸,軸交于兩點,與反比例函數(shù)的圖象相交于、兩點,分別過兩點作軸和軸的垂線,垂足分別為,連接、.下列四個結論:①的面積相等;②;③;④.其中正確的結論是__________.(把你認為正確結論的序號都填上)

【答案】①②③④

【解析】

Dx,),得出Fx,0),根據(jù)三角形的面積公式求出△DEF的面積,同法求出△CEF的面積,即可判斷①;根據(jù)相似三角形的判定判斷②即可;證出平行四邊形BDFE和平行四邊形ACEF,可推出AC=BD,判斷③即可;由一次函數(shù)解析式求得點A、B的坐標,結合銳角三角函數(shù)的定義判斷④即可.

①設Dx,),則Fx,0),

由圖象可知x0k0,

∴△DEF的面積是:××x=k

Ca,),則E0,),

由圖象可知:a0,0

CEF的面積是:×|a|×||=|k|,

∴△CEF的面積=DEF的面積,

故①正確;

②△CEF和△DEFEF為底,則兩三角形EF邊上的高相等,

EFCD,

FEAB,

∴△AOB∽△FOE,

故②正確;

③∵BDEFDFBE,

∴四邊形BDFE是平行四邊形,

BD=EF,

同理EF=AC

AC=BD,

故③正確;

④由一次函數(shù)y=ax+b的圖象與x軸,y軸交于A,B兩點,

易得A-0),B0b),

OA=,OB=b,

tanBAO==a

故④正確.

正確的有4個:①②③④.

故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下表三行數(shù)的規(guī)律,回答下列問題:

...

...

...

...

1)第行的第四列數(shù)______________,第行的第六列數(shù)______________;

2)若第行的某一列的數(shù)為,則第行與它同一列的數(shù)為______________(用含的式子表示);

3)已知第列的三個數(shù)的和為,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE4,過點EEFBC,分別交BDCD于點G,F兩點,若MN分別是DG,CE的中點,則MN的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風箏,風箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風箏所在點G與建筑物頂點D及風箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風箏線與水平線夾角為37°.

(1)求風箏距地面的高度GF;

(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市正大力倡導”垃圾分類“,2015年第一季度某企業(yè)按A類垃圾處理費25/噸、B類垃圾處理費16/噸的收費標準,共支付垃圾處理費520.20154月起,收費標準上調(diào)為:A類垃圾處理費100/噸,B類垃圾處理費30/.若該企業(yè)2015年第二季度需要處理的A類,B類垃圾的數(shù)量與第一季度相同,就要多支付垃圾處理費880.

1)該企業(yè)第一季度處理的兩類垃圾各多少噸?

2)該企業(yè)計劃第二季度將上述兩種垃圾處理總量減少到24噸,且B類垃圾處理量不超過A類垃圾處理量的3倍,該企業(yè)第二季度最少需要支付這兩種垃圾處理費共多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=3,BC=4,若AC,BC邊上的中線BE,AD垂直相交于點O,則AB=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=-1的頂點為A,直線l過點P0,m)且平行于x軸,與拋物線交于點B和點C.若AB=ACBAC=90°,則m=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應市委、市政府創(chuàng)建森林城市的號召,某中學在校園內(nèi)計劃種植柳樹和銀杏樹.已知購買2棵柳樹苗和3棵銀杏樹苗共需1800元,購買4棵柳樹苗和1棵銀杏樹苗共需1100元.

(1)求每棵柳樹苗和每棵銀杏樹苗各多少錢?

(2)該校計劃購買兩種樹苗共100棵,并且銀杏樹苗的數(shù)量不少于柳樹苗的,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三個完全相同的小球上分別寫上-2-1,2三個數(shù)字,然后裝入一個不透明的布袋內(nèi)攪勻,從布袋中取出一個球,記下小球上的數(shù)字為,放回袋中再攪勻,然后再從袋中取出一個小球,記下小球上的數(shù)字為,組成一對數(shù).

1)請用列表或畫樹狀圖的方法,表示出數(shù)對的所有可能的結果;

2)求直線不經(jīng)過第一象限的概率.

查看答案和解析>>

同步練習冊答案