【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,其中正確的結(jié)論有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
【答案】C
【解析】
由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解:∵拋物線開(kāi)口向下,
∴a<0,
∵,
∴b=4a,ab>0,
∴b﹣4a=0,
∴①錯(cuò)誤,④正確,
∵拋物線與x軸交于﹣4,0處兩點(diǎn),
∴b2﹣4ac>0,方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,
∴②⑤正確,
∵當(dāng)x=﹣3時(shí)y>0,即9a﹣3b+c>0,
∴③正確,
故正確的有②③④⑤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=x2+x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,過(guò)點(diǎn)C作x軸的平行線交拋物線于點(diǎn)P.連接AC.
(1)求點(diǎn)P的坐標(biāo)及直線AC的解析式;
(2)如圖2,過(guò)點(diǎn)P作x軸的垂線,垂足為E,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;
(3)如圖3,點(diǎn)M為線段OA上一點(diǎn),以OM為邊在第一象限內(nèi)作正方形OMNG,當(dāng)正方形OMNG的頂點(diǎn)N恰好落在線段AC上時(shí),將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí)停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點(diǎn)R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AC與⊙O相切于點(diǎn)A,點(diǎn)B為⊙O上一點(diǎn),且OC⊥OB于點(diǎn)O,連接AB交OC于點(diǎn)D.
(1)求證:AC=CD;
(2)若AC=3,OB=4,求OD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位800名職工積極參加向貧困地區(qū)學(xué)校捐書(shū)活動(dòng),為了解職工的捐書(shū)數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工的捐書(shū)數(shù)量作為樣本,對(duì)他們的捐書(shū)數(shù)量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,
由圖中給出的信息解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這30名職工捐書(shū)本數(shù)的平均數(shù),寫(xiě)出眾數(shù)和中位數(shù);
(3)估計(jì)該單位800名職工共捐書(shū)多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4經(jīng)過(guò)A(﹣3,0),B(5,﹣4)兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.
(1)求拋物線的表達(dá)式;
(2)求△ABC的面積;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ABM是直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移1個(gè)單位長(zhǎng)度,然后繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線y=x2+5x+6.則原拋物線的頂點(diǎn)坐標(biāo)是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+ax+a(a≠0)交x軸于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左邊),交y軸于點(diǎn)C,連接AC,tan∠CAO=3.
(1)如圖1,求拋物線的解析式;
(2)如圖2,D是第一象限的拋物線上一點(diǎn),連接DB,將線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE(點(diǎn)B與點(diǎn)E為對(duì)應(yīng)點(diǎn)),點(diǎn)E恰好落在y軸上,求點(diǎn)D的坐標(biāo);
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)D作x軸的垂線,垂足為H,點(diǎn)F在第二象限的拋物線上,連接DF交y軸于點(diǎn)G,連接GH,sin∠DGH=,以DF為邊作正方形DFMN,P為FM上一點(diǎn),連接PN,將△MPN沿PN翻折得到△TPN(點(diǎn)M與點(diǎn)T為對(duì)應(yīng)點(diǎn)),連接DT并延長(zhǎng)與NP的延長(zhǎng)線交于點(diǎn)K,連接FK,若FK=,求cos∠KDN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將命題“在同圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等”改寫(xiě)成“已知……求證……”的形式,下列正確的是( )
A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求證:AB=CD
B.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求證:AD=BC
C.已知:在⊙O中,∠AOB=∠COD.求證:弧AD=弧BC,AD=BC
D.已知:在⊙O中,∠AOB=∠COD.求證:弧AB=弧CD,AB=CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com