【題目】已知點(1,3)在函數(shù)的圖象上,正方形的邊軸上,點是對角線的中點,函數(shù)的圖象又經過兩點,則點的橫坐標為__________

【答案】

【解析】

把已知點的坐標代入函數(shù)解析式即可求出k的值,把k的值代入得到函數(shù)的解析式,然后根據(jù)正方形的性質設出AE的坐標,因為函數(shù)圖象過這兩點,把設出的兩點坐標代入到函數(shù)解析式中得到①和②,聯(lián)立即可求出ab的值,得到E的坐標.

(1,3)代入到y=得:k=3,

故函數(shù)解析式為y=,

A(a, )(a>0),根據(jù)圖象和題意可知,E(a+,),

因為y=的圖象經過E

所以將E代入到函數(shù)解析式中得: (a+)=3,

=,

求得:a=a= (不合題意,舍去),

a=

a+=,

則點E的橫坐標為.

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,點E在邊AB上,連結DE,CE.

(1)若∠A=B=DEC=50°,找出圖中的相似三角形,并說明理由;

(2)若四邊形ABCD為矩形,AB=5,BC=2,且圖中的三個三角形都相似,求AE的長.

(3)若∠A=B=90°,ADBC,圖中的三個三角形都相似,請判斷AEBE的數(shù)量關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我們可以利用乘方運算把二次方程轉化為一次方程進行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解決問題:

(1)解方程:(3x﹣2)2=25.

解題思路:我們只要把 3x﹣2 看成一個整體就可以利用乘方運算進一步求解方程了.

解:根據(jù)乘方運算,得3x﹣2=5 3x﹣2=   

分別解這兩個一元一次方程,得x1=,x2=﹣1.

(2)解方程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD、AE分別是ABC的中線、高,且AB=4cm,AC=3cm,請解答下列問題:

(1)ABDACD面積大小有怎樣的關系?并說明理由.

(2)ABDACD周長之差是多少?

(3)AE=2.5cm ,BC=6cm時,試求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的對角線相交于點,的角平分線分別交、兩點,若,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.

(1)求證:COM∽△CBA;

(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的圖象如圖所示,在下列說法中:①;;;④當時,隨著的增大而增大;⑤.其中正確的有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新泰特產專賣店銷售櫻桃,其進價為每千克30元,按每千克50元出售,平均每天可售出100千克,后來經過市場調查發(fā)現(xiàn),單價每降低1元,則平均每天的銷售量可增加10千克,若該專賣店銷售這種櫻桃想要平均每天獲利2240元,請回答:

(1)每千克櫻桃應降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點C到公路的距離為6m.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線的表達式;

(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計算說明這輛貨車能否安全通過這條隧道.

查看答案和解析>>

同步練習冊答案