【題目】設平面內一點到等邊三角形中心的距離為d,等邊三角形的內切圓半徑為r,外接圓半徑為R .對于一個點與等邊三角形,給出如下定義:滿足rdR的點叫做等邊三角形的中心關聯(lián)點.在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點D(2,2),E,1),F,﹣1).在D,E,F中,是等邊△ABC的中心關聯(lián)點的是 ;

(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關聯(lián)點Pmn),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b總存在等邊△ABC的中心關聯(lián)點;(直接寫出答案,不需過程)

(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為.當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.

【答案】(1)E,F;(2)①0≤m,②﹣ b≤2;(3)存在,t=

【解析】試題解析:(1)根據等邊三角形的中心關聯(lián)點的定義,可得 E、F 是等邊三角形的中心關聯(lián)點;

2①依題意A02),M,0)可求得直線AM的解析式為,所以OAE為等邊三角形,所以AE邊上的高長為.當點PAE上時, OP≤2.所以當點PAE上時,點P都是等邊ABC的中心關聯(lián)點.所以0≤m;

②同b≤2;

3t=

解:(1E,F;

2①解:依題意A02),M0.

可求得直線AM的解析式為.

經驗證E在直線AM.

因為OE=OA=2,MAO=60°,

所以OAE為等邊三角形,

所以AE邊上的高長為.

當點PAE上時, OP≤2.

所以當點PAE上時,點P都是等邊ABC的中心關聯(lián)點.

所以0≤m;

b≤2;

3t=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組: ,并在數(shù)軸上表示它的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是一位同學做的四道題:①a3+a3=a6;②(xy23=x3y6;③x2x3=x6;④(﹣a)2÷a=﹣a.其中做對的一道題是( 。

A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在鈍角△ABC中,點D是BC的中點,分別以AB和AC為斜邊向△ABC的外側作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點,連接DM、DN、DE、DF、EM、EF、FN.求證:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2﹣y2=14,x﹣y=7,則x+y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BFAE,BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2x+k=0有實數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.

(1)求證:BD=CE;

(2)求證:∠M=∠N.

查看答案和解析>>

同步練習冊答案