【題目】一個(gè)多邊形的內(nèi)角和等于1260°,則從此多邊形一個(gè)頂點(diǎn)引出的對(duì)角線有( )
A. 4條 B. 5條 C. 6條 D. 7條
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于,且.
()求證:.
()若,于,為中點(diǎn),與,分別交于點(diǎn),.
①判斷線段與相等嗎?請(qǐng)說明理由.
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在8×8的網(wǎng)絡(luò)中,△ABC是格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),若點(diǎn)A坐標(biāo)為(-1,3),按要求回答下列問題:
(1)建立符合條件的平面直角坐標(biāo)系,并寫出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)將△ABC先向下平移2個(gè)單位長(zhǎng)度,在向右平移3個(gè)單位長(zhǎng)度,得到△DEF,請(qǐng)?jiān)趫D中畫出△DEF,并求出線段AC在平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )
A. 2 B. 8 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 相等的角是對(duì)頂角
B. 若直線a與b互相垂直,記作a∥b
C. 內(nèi)錯(cuò)角相等
D. 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:EB=EC;
(2)若以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù)分別為1、3、5,點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是﹣2,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P1,點(diǎn)P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為P2,點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為P3,點(diǎn)P3關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P4,…,則P1P2016的長(zhǎng)度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠C=∠D,OD=OC.求證:DE=CE.
【答案】證明見解析
【解析】試題分析:利用ASA證明△OBC≌△OAD,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得OA=OB,再由OD=OC,即可得AC=BD,根據(jù)AAS證明△ACE≌△BDE,再由全等三角形的對(duì)應(yīng)邊相等即可得結(jié)論.
試題解析:
在△OBC和△OAD中,
,
∴△OBC≌△OAD(ASA),
∴OA=OB,
∵OD=OC,
∴OD﹣OB=OC﹣OA,即AC=BD,
在△ACE和△BDE中,
,
∴△ACE≌△BDE(AAS),
∴DE=CE.
【題型】解答題
【結(jié)束】
27
【題目】如圖,以等腰直角三角形ABC的斜邊AB為邊向內(nèi)作等邊△ABD,連接DC,以DC為邊,作等邊△DCE,點(diǎn)B、E在CD的同側(cè).
(1)求∠BCE的大;
(2)求證:BE=AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com