【題目】如圖,△ABC中,∠C=90°,AB=10cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按CABC的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒。

(1)出發(fā)2秒后,求△ABP的周長(zhǎng)。

(2)當(dāng)t為幾秒時(shí),BP平分∠ABC?

(3)問(wèn)t為何值時(shí),△BCP為等腰三角形?

(4)另有一點(diǎn)Q,從點(diǎn)C開(kāi)始,按CBAC的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。當(dāng)t為何值時(shí),直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分?

【答案】116+2;(2t=3秒時(shí),AP平分∠CAB;(3)當(dāng)t6s12s10.8s13s時(shí),BCP為等腰三角形;(4)當(dāng)t4秒或12秒時(shí),直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分.

【解析】

1)由勾股定理求出AC=8 cm,動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,出發(fā)2秒后,則CP=2 cmAP=6 cm,由勾股定理求出PB,即可得出結(jié)果;

2)過(guò)點(diǎn)PPDAB于點(diǎn)D,由HL證明RtAPDRtAPC,得出AD=AC=6cm,因此BD=10-6=4cm,設(shè)PC=x cm,則PB=8-xcm,由勾股定理得出方程,解方程即可;

3)分兩種情況:①若P在邊AC上時(shí),BC=CP=6cm,此時(shí)用的時(shí)間為6s;

②若PAB邊上時(shí),有三種情況:

i若使BP=CB=6cm,此時(shí)AP=4cm,P運(yùn)動(dòng)的路程為4+8=12cm,用的時(shí)間為12時(shí);

ii)若CP=BC=6cm,過(guò)CCDAB于點(diǎn)D,根據(jù)面積法求得高CD=4.8cm,求出BP=2PD=7.2cm,得出P運(yùn)動(dòng)的路程為18-7.2=10.8cm,即可得出結(jié)果;

)若BP=CP,則∠PCB=B,證出PA=PC得出PA=PB=5cm,得出P的路程為13cm,即可得出結(jié)果;

4)分兩種情況:①當(dāng)P、Q沒(méi)相遇前:如圖6,P點(diǎn)走過(guò)的路程為t,Q走過(guò)的路程為2t,根據(jù)題意得出方程,解方程即可;

②當(dāng)P、Q沒(méi)相遇后:當(dāng)P點(diǎn)在AB上,QAC上,則AP=t-8AQ=2t-16,根據(jù)題意得出方程,解方程即可;即可得出結(jié)果.

(1)如圖1,由∠C=90,AB=10cm,BC=6cm,

AC=8 cm,

∵動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm

∴出發(fā)2秒后,則CP=2 cm,AP=6 cm,

∵∠C=90°,

∴由勾股定理得PB= =2cm

∴△ABP的周長(zhǎng)為:AP+PB+AB=(16+2) cm.

(2)如圖2所示,過(guò)點(diǎn)PPDAB于點(diǎn)D,

AP平分∠CAB,

PD=PC.

RtAPDRtAPC中,

RtAPDRtAPC(HL),

AD=AC=6 cm,

BD=106=4 cm.

設(shè)PC=x cm,PB=(8x)cm

RtBPD,PD2+BD2=PB2,

x2+42=(8x)2,

解得:x=3,

∴當(dāng)t=3秒時(shí),AP平分∠CAB;

(3)①如圖3,若P在邊AC上時(shí),BC=CP=6cm,

此時(shí)用的時(shí)間為6sBCP為等腰三角形

②若PAB邊上時(shí),有三種情況:

i)如圖4,若使BP=CB=6cm,此時(shí)AP=4cm,P運(yùn)動(dòng)的路程為4+8=12cm

所以用的時(shí)間為12s時(shí),BCP為等腰三角形;

ii)如圖5,若CP=BC=6cm,

過(guò)CCDAB于點(diǎn)D,根據(jù)面積法得:高CD=4.8cm,

RtPCD中,PD=3.6cm,∴BP=2PD=7.2cm,

P運(yùn)動(dòng)的路程為187.2=10.8cm,

∴用的時(shí)間為10.8s時(shí),BCP為等腰三角形;

ⅲ)如圖6,若BP=CP,則∠PCB=B,

∵∠ACP+BCP=90°,B+A=90°,

∴∠ACP=A

PA=PC

PA=PB=5cm

P的路程為13cm,所以時(shí)間為13s時(shí),BCP為等腰三角形.

綜上所述,當(dāng)t6s12s10.8s13s時(shí),BCP為等腰三角形;

(4)分兩種情況:①當(dāng)PQ沒(méi)相遇前:如圖7,

P點(diǎn)走過(guò)的路程為tcm,Q走過(guò)的路程為2tcm

∵直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分,

t+2t=12,

t=4s;

②當(dāng)P、Q沒(méi)相遇后:如圖8,

當(dāng)P點(diǎn)在AB上,QAC上,則AP=t8,AQ=2t16

∵直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分,

t8+2t16=12,

t=12s,

∴當(dāng)t4秒或12秒時(shí),直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10分)

問(wèn)題提出:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

問(wèn)題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過(guò)試驗(yàn)、觀察、類(lèi)比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),

4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時(shí),

5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

綜上所述,可得表


3

4

5

6


1

0

1

1

探究二:

7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫(xiě)出解答過(guò)程,并把結(jié)果填在表中)

分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問(wèn)題:用根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











問(wèn)題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(要求寫(xiě)出解答過(guò)程)

其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)某班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷(xiāo)售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷(xiāo)售量為p(單位:件),每天的銷(xiāo)售利潤(rùn)為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷(xiāo)售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);

3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,DBC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.

(1)如圖1,當(dāng)點(diǎn)DBC邊上的中點(diǎn)時(shí),SABDSACD= ;

(2)如圖2,當(dāng)AD是∠BAC的平分線(xiàn)時(shí),若AB=m,AC=n,求SABDSACD的值(用含m,n的代數(shù)式表示)

(3)如圖3,AD平分∠BAC,延長(zhǎng)ADE,使得AD=DE,連接BE,如果AC=2AB=4,SBDE=6,

那么SABC = .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與理解

折紙,常常能為證明一個(gè)命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>B呢?

AC沿∠A的角平分線(xiàn)AD翻折,因?yàn)?/span>AB>AC,所以點(diǎn)C落在AB上的點(diǎn)處,即,據(jù)以上操作,易證明,所以,又因?yàn)?/span>>B,所以∠C>B.

感悟與應(yīng)用

(1)如圖(a),在△ABC中,∠ACB=90°,B=30°,CD平分∠ACB,試判斷ACAD、BC之間的數(shù)量關(guān)系,并說(shuō)明理由;

(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,

求證:∠B+D=180°;

AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)務(wù)院辦公廳在2015316日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:

1)獲得一等獎(jiǎng)的學(xué)生人數(shù);

2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,CD四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn),與反比例函數(shù)的圖象在第一象限內(nèi)交于點(diǎn)M,OBM的面積為2.

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求AM的長(zhǎng)度;

3Px軸上一點(diǎn),當(dāng)AMPM時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)的數(shù)分別為a、b、cd、e

(1)若ae=0,直接寫(xiě)出代數(shù)式bcd的值為_____;

(2)若ab=7,先化簡(jiǎn),再求值:;

(3)若abcde=5,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m,且滿(mǎn)足MA+ME>12,則m的范圍是____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知MON=120°,點(diǎn)A,B分別在OM,ON上,且OA=OB=a,將射線(xiàn)OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(0°<α<120°且α60°),作點(diǎn)A關(guān)于直線(xiàn)OM′的對(duì)稱(chēng)點(diǎn)C,畫(huà)直線(xiàn)BC交OM′于點(diǎn)D,連接AC,AD,有下列結(jié)論:

①AD=CD;

②∠ACD的大小隨著α的變化而變化;

當(dāng)α=30°時(shí),四邊形OADC為菱形;

④△ACD面積的最大值為a2;

其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案