【題目】下列圖形中,①圓;②平行四邊形;③長(zhǎng)方形;④等腰三角形.其中是中心對(duì)稱圖形有______個(gè).

【答案】3

【解析】

根據(jù)中心對(duì)稱圖形的定義判斷即可.

解:根據(jù)中心對(duì)稱圖形的定義可知:圓、平行四邊形和長(zhǎng)方形是中心對(duì)稱圖形,有3個(gè),

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y=x2﹣2x+3不動(dòng),將平面直角坐標(biāo)系xOy先沿水平方向向右平移一個(gè)單位,再沿鉛直方向向上平移三個(gè)單位,則原拋物線圖象的解析式應(yīng)變?yōu)椋?/span>
A.y=(x﹣2)2+3
B.y=x2﹣1
C.y=(x﹣2)2+5
D.y=x2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.

【特例探究】

(1)如圖1,當(dāng)tan∠PAB=1,c=4時(shí),a= ,b= ;

如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= ,b= ;

【歸納證明】

(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

【拓展證明】

(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3,AB=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】|a|=4,|b|<2,且b為整數(shù).

(1)求a,b的值;

(2)當(dāng)a,b為何值時(shí),a+b有最大值或最小值?此時(shí),最大值或最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且ADMND,BEMNE

1)求證:ADC≌△CEB;

2AD=1BE=2,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE.求證:

(1)∠CEB=∠CBE;

(2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,AE,F,C在一條直線上,AE=CF,過(guò)E,F分別作DE⊥ACBF⊥AC,若AB=CD

1)求證:EG=FG

2)若將△DEC的邊EC沿AC方向移動(dòng),變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=2x+3的圖象沿y軸向下平移2個(gè)單位,所得圖象的函數(shù)解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店一種玩具原價(jià)為100元,“雙十一”期間,經(jīng)過(guò)兩次降價(jià),售價(jià)變成了81元,假設(shè)兩次降價(jià)的百分率相同,則每次降價(jià)的百分率為

查看答案和解析>>

同步練習(xí)冊(cè)答案