精英家教網(wǎng)如圖,等邊△ABC的面積為S,⊙O是它的外接圓,點(diǎn)P是
BC
的中點(diǎn).
(1)試判斷過(guò)點(diǎn)C所作⊙O的切線與直線AB是否相交,并證明你的結(jié)論;
(2)設(shè)直線CP與AB相交于點(diǎn)D,過(guò)點(diǎn)B作BE⊥CD,垂足為E,證明BE是⊙O的切線,并求△BDE的面積.
分析:(1)作⊙O的切線CF,判斷出∠BCF=∠ABC,得到CF∥AB,可知CF與直線AB不相交.
(2)OB是圓O直徑,證出∠HBE=90°,可得BE是⊙O的切線,并將S△BDE轉(zhuǎn)化為S△BCE
解答:精英家教網(wǎng)解:(1)CF是⊙O的切線,(如圖)
CF與直線AB不相交.(1分)
證明:∵CF是⊙O的切線,
∴∠BCF=∠A,(3分)
∵△ABC是等邊三角形,
∴∠ABC=∠A,
∴∠BCF=∠ABC,
∴CF∥AB,
∴CF與直線AB不相交.(4分)

(2)連接BO并延長(zhǎng)交AC于H.
∵⊙O是等邊△ABC的外接圓,
∴∠BHC=90°,(5分)
∵點(diǎn)P是BC的中點(diǎn),
∴∠BCE=30°.(6分)
又∵∠ACB=60°,
∴∠HCE=90°.
∵∠BEC=90°,
∴∠HBE=90°.
∴BE是⊙O的切線. (8分)
在△ACD中,
∵∠ACD=90°,∠A=60°,
∴∠D=30°,(9分)
∴BD=BC,
∴DE=CE,
∴S△BDE=S△BCE,(10分)
在矩形BHCE中,
S△BCE=S△BCH=
1
2
S,(11分)
∴S△BCE=
1
2
S,
∴S△BDE=
1
2
S.(12分)
點(diǎn)評(píng):本題綜合考查了切線的判定,解直角三角形等知識(shí)點(diǎn)的運(yùn)用.此題是一個(gè)大綜合題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC的邊長(zhǎng)為l,取邊AC的中點(diǎn)D,在外部畫出一個(gè)新的等邊三角形△CDE,如此繞點(diǎn)C順時(shí)針繼續(xù)下去,直到所畫等邊三角形的一邊與△ABC的BC邊重疊為止,此時(shí)這個(gè)三角形的邊長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,等邊△ABC的三條角平分線相交于點(diǎn)O,OD∥AB交BC于D,OE∥AC交BC于點(diǎn)E,那么這個(gè)圖形中的等腰三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為6,點(diǎn)D、E分別在AB、AC上,且AD=AE=2,直線l過(guò)點(diǎn)A,且l∥BC,若點(diǎn)F從點(diǎn)B開(kāi)始以每秒1個(gè)單位長(zhǎng)的速度沿射線BC方向運(yùn)動(dòng),設(shè)F點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t>0時(shí),直線DF交l于點(diǎn)G,GE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)當(dāng)t為何值時(shí),AG=AE?
(2)請(qǐng)證明△GFH的面積為定值;
(3)當(dāng)t為何值時(shí),點(diǎn)F和點(diǎn)C是線段BH的三等分點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC的邊長(zhǎng)為2,AD是△ABC的角平分線,
(1)求AD的長(zhǎng);
(2)取AB的中點(diǎn)E,連接DE,寫出圖中所有與BD相等的線段.(不要求說(shuō)理)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC的邊長(zhǎng)為1cm,D、E分別是AB、AC上的點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處,且點(diǎn)A′在△ABC外部,則陰影部分圖形的周長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案