【題目】如圖,ABCD,連接AD,點EAD的中點,連接BE并延長交CDF點.

(1)請說明△ABE≌△DFE的理由;

(2)連接CB,AC,若CBCDAC=CD,∠D=30°,CD=2,求BF的長.

【答案】(1)證明見解析;(2)BF=2

【解析】

利用三角形全等判定條件ASA進行判斷.

利用30°所對直角邊等于斜邊的一半求出CE的長,再利用BF=2CE求出BF的長度.

證明:∵ABCD

∴∠BAE=EDF

∵點EAD的中點

AE=ED

又∵∠AEB=FED

∴△ABE≌△DFEASA

2)∵AC=CD EAD中點 CEAD

∵∠D=30°CD=2 CE=1

又∵CBCDBE=EF BF=2CE

BF=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=3,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1

1)作△ABC關于軸的對稱圖形△ABC(不寫做法),并寫出ABC'的坐標,想一想:關于軸對稱的兩個點之間有什么關系?

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線相交于,,射線位置起始,繞點逆時針旋轉(zhuǎn),終邊與始邊形成的角度為.

問題1:若逆時針旋轉(zhuǎn)停止,則

1__________________時,平分;

2__________________時,

3__________________時,;

問題2:若逆時針旋轉(zhuǎn)的速度為每秒,在勻速旋轉(zhuǎn)的同時,直線也從圖的位置開始繞點逆時針勻速旋轉(zhuǎn),旋轉(zhuǎn)速度為每秒,當完成旋轉(zhuǎn)一周時,也同時停止旋轉(zhuǎn).設旋轉(zhuǎn)時間為)秒.

1)旋轉(zhuǎn)時間為多少時,射線重合.請寫出求解過程.

2)觀察旋轉(zhuǎn)全過程,判斷旋轉(zhuǎn)時間為多少時,射線平分.請直接寫出的值.(注:指大于且小于的角)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當△ACM周長最小時,求點M的坐標及△ACM的最小周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡再求值:當a=9時,求a+的值,甲乙兩人的解答如下:

甲的解答為:原式=a+=a+(1-a)=1.

乙的解答為:原式=a+=a+(a-1)=2a-1=17.

兩種解答中,_____的解答是錯誤的,錯誤的原因是當a=9時______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學計劃將100 500元錢全部用于該電腦公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點A的坐標為(2,6).

(1)直接寫出B、C、D三點的坐標;
(2)若將矩形向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,猜想這是哪兩個點,并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案