如圖1,已知拋物線y=-x2+bx+c經(jīng)過點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.

(1) 求b,c的值。
(2)在第二象限的拋物線上,是否存在一點(diǎn)P,使得△PBC的面積最大?求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若不存在,請說明理由.
(3) 如圖2,點(diǎn)E為線段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過B、E、O三點(diǎn)的圓與過點(diǎn)B且垂直于BC的直線交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).

(1) ;(2)點(diǎn)P坐標(biāo)為(,),最大=;(3) (,)  .

解析試題分析:(1)將A、B兩點(diǎn)坐標(biāo)代入即可求出
(2)假設(shè)存在一點(diǎn)P(x,),則△PBC的面積可表示為.從而可求出△PBC的面積最大值及點(diǎn)P的坐標(biāo);
(3)根據(jù)題意易證,所以,當(dāng)OE最小時(shí),△OEF面積取得最小值,點(diǎn)E在線段BC上, 所以當(dāng)OE⊥BC時(shí),OE最小此時(shí)點(diǎn)E是BC中點(diǎn),因此 E(,)  .
試題解析:(1)  b=-2,c=" 3"
(2)存在。理由如下:
設(shè)P點(diǎn)

當(dāng)時(shí),   ∴最大= 
當(dāng)時(shí),
∴點(diǎn)P坐標(biāo)為(,)
(3)∵,而, ,
, ∴ 
 
∴當(dāng)最小時(shí),面積取得最小值.
∵點(diǎn)在線段上,  ∴當(dāng)時(shí),最小.
此時(shí)點(diǎn)E是BC中點(diǎn)
 (,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知:為邊長是的等邊三角形,四邊形為邊長是6的正方形. 現(xiàn)將等邊和正方形按如圖①的方式擺放,使點(diǎn)與點(diǎn)重合,點(diǎn)、、在同一條直線上,從圖①的位置出發(fā),以每秒1個(gè)單位長度的速度沿方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)暫停運(yùn)動(dòng),設(shè)的運(yùn)動(dòng)時(shí)間為秒().

(1)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊和正方形重疊部分的面積為,請直接寫出之間的函數(shù)關(guān)系式;
(2)如圖②,當(dāng)點(diǎn)與點(diǎn)重合時(shí),作的角平分線于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,得到. 在線段上是否存在點(diǎn),使得為等腰三角形. 如果存在,求線段的長度;若不存在,請說明理由.
(3)如圖③,若四邊形為邊長是的正方形,的移動(dòng)速度為每秒 個(gè)單位長度,其余條件保持不變. 開始移動(dòng)的同時(shí),點(diǎn)從點(diǎn)開始,沿折線以每秒個(gè)單位長度開始移動(dòng),停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng). 設(shè)在運(yùn)動(dòng)過程中,交折線點(diǎn),則當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線過點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點(diǎn)P,使CP+EP的值最小,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,).

(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點(diǎn)D,試在對稱軸上找出點(diǎn)P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).
(3)如圖2,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),分別連接AC、BC,過點(diǎn)E作EF∥AC交線段BC于點(diǎn)F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時(shí)E點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)的一種健身產(chǎn)品在市場上受到普遍歡迎,每年可在國內(nèi)、國外市場上全部售完,該公司的年產(chǎn)量為6千件,若在國內(nèi)市場銷售,平均每件產(chǎn)品的利潤y1(元)與國內(nèi)銷售數(shù)量x(千件)的關(guān)系為:若在國外銷售,平均每件產(chǎn)品的利潤y2(元)與國外的銷售數(shù)量t(千件)的關(guān)系為:
(1)用x的代數(shù)式表示t為:t=      ;當(dāng)0<x≤4時(shí), y2與x的函數(shù)關(guān)系為y2      ;當(dāng)      ≤x<      時(shí),y2=100;
(2)求每年該公司銷售這種健身產(chǎn)品的總利潤w(千元)與國內(nèi)的銷售數(shù)量x(千件)的函數(shù)關(guān)系式,并指出x的取值范圍;
(3)該公司每年國內(nèi)、國外的銷售量各為多少時(shí),可使公司每年的總利潤最大?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù).
(1)求出該函數(shù)圖象的頂點(diǎn)坐標(biāo),圖象與x軸的交點(diǎn)坐標(biāo).
(2)當(dāng)x在什么范圍內(nèi)時(shí),y隨x的增大而增大?
(3)當(dāng)x在什么范圍內(nèi)時(shí),?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)     (填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進(jìn)行捕撈、銷售.
九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(jià)(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當(dāng)天收入=日銷售額日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(              );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(       ,       );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案