【題目】操作:“如圖1,P是平面直角坐標系中一點(x軸上的點除外),過點P作PC⊥x軸于點C,點C繞點P逆時針旋轉(zhuǎn)60°得到點Q.”我們將此由點P得到點Q的操作稱為點的T變換.

(1)點P(a,b)經(jīng)過T變換后得到的點Q的坐標為 ;若點M經(jīng)過T變換后得到點N(6,﹣ ),則點M的坐標為
(2)A是函數(shù)y= x圖象上異于原點O的任意一點,經(jīng)過T變換后得到點B.
①求經(jīng)過點O,點B的直線的函數(shù)表達式;
②如圖2,直線AB交y軸于點D,求△OAB的面積與△OAD的面積之比.

【答案】
(1)

如圖1,連接CQ,過Q作QD⊥PC于點D,

由旋轉(zhuǎn)的性質(zhì)可得PC=PQ,且∠CPQ=60°,

∴△PCQ為等邊三角形,

∵P(a,b),

∴OC=a,PC=b,

∴CD= PC= b,DQ= PQ= b,

∴Q(a+ b, b);

設(shè)M(x,y),則N點坐標為(x+ y, y),

∵N(6,﹣ ),

,解得

∴M(9,﹣2 );

故答案為:(a+ b, b);(9,﹣2


(2)

①∵A是函數(shù)y= x圖象上異于原點O的任意一點,

∴可取A(2, ),

∴2+ × = , × = ,

∴B( ),

設(shè)直線OB的函數(shù)表達式為y=kx,則 k= ,解得k= ,

∴直線OB的函數(shù)表達式為y= x;

②設(shè)直線AB解析式為y=k′x+b,

把A、B坐標代入可得 ,解得 ,

∴直線AB解析式為y=﹣ x+

∴D(0, ),且A(2, ),B( , ),

∴AB= = ,AD= = ,

= = =


【解析】(1)連接CQ可知△PCQ為等邊三角形,過Q作QD⊥PC,利用等邊三角形的性質(zhì)可求得CD和QD的長,則可求得Q點坐標;設(shè)出M點的坐標,利用P、Q坐標之間的關(guān)系可得到點M的方程,可求得M點的坐標;(2)①可取A(2, ),利用T變換可求得B點坐標,利用待定系數(shù)示可求得直線OB的函數(shù)表達式;②由待定系數(shù)示可求得直線AB的解析式,可求得D點坐標,則可求得AB、AD的長,可求得△OAB的面積與△OAD的面積之比.
【考點精析】本題主要考查了一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識點,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB=AC,∠BAC=90°,PBC上的一動點,AP=AQ,∠PAQ=90°,連接CQ

(1)求證:CQBC

(2)△ACQ能否是直角三角形?若能,請直接寫出此時點P的位置;若不能,請說明理由.

(3)當點PBC上什么位置時,△ACQ是等腰三角形?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“表1”為初三(1)班全部43名同學某次數(shù)學測驗成績的統(tǒng)計結(jié)果,則下列說法正確的是(

成績(分)

70

80

90

男生(人)

5

10

7

女生(人)

4

13

4


A.男生的平均成績大于女生的平均成績
B.男生的平均成績小于女生的平均成績
C.男生成績的中位數(shù)大于女生成績的中位數(shù)
D.男生成績的中位數(shù)小于女生成績的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)解不等式組:
(2)解方程: =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,我們把,每個小正方形的頂點叫做格點,連接任意兩個格點的線段叫網(wǎng)格線段,以網(wǎng)格線段為邊組成的圖形叫做格點圖形,在下列如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1.
(1)請你在圖1中畫一個格點圖形,且該圖形是邊長為 的菱形;
(2)請你在圖2中用網(wǎng)格線段將其切割成若干個三角形和正方形,拼接成一個與其面積相等的正方形,并在圖3中畫出格點正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(﹣4,0),B(0,4),在x軸上確定點M,使三角形MAB是等腰三角形,則M點的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學成就.
《九章算術(shù)》中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”
譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”
設(shè)每頭牛值金x兩,每只羊值金y兩,可列方程組為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉(zhuǎn)變換探究活動.如圖1,在矩形紙片ABCD和矩形紙片EFGH中,AB=1,AD=2,且EF>AD,F(xiàn)G>AB,點E是AD的中點,矩形紙片EFGH以點E為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中會產(chǎn)生怎樣的數(shù)量關(guān)系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.

(1)“奮進”小組提出的問題是:如圖1,當EF與AB相交于點M,EH與BC相交于點N時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當AM=CN時,AM與BM有怎樣的數(shù)量關(guān)系,說明理由.
(3)“創(chuàng)新”小組提出的問題是;若矩形EFGH繼續(xù)以點E為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),當∠AEF=60°時,請你在圖2中畫出旋轉(zhuǎn)后的示意圖,并求出此時EF將邊BC分成的兩條線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果10b=n,那么稱b為n的勞格數(shù),記為b= d(n).

(1)根據(jù)勞格數(shù)的定義,可知d(10)=1,d(102)=2,直接寫出 d(103)的值.

(2)勞格數(shù)有如下運算性質(zhì):若m,n為正數(shù),則d(mn)= d(m)+ d(n);d()= d(m)- d(n).

根據(jù)運算性質(zhì),求,若 ,直接寫出的值.

(3)下表中與數(shù)x對應(yīng)的勞格數(shù) 有且只有兩個是錯誤的,請找出錯誤的勞格數(shù)并改正.

1.5

3

5

6

8

9

12

27

查看答案和解析>>

同步練習冊答案