已知:二次函數(shù)的表達(dá)式為:y=2x2+4x-1。
(1)設(shè)這個函數(shù)圖象的頂點(diǎn)坐標(biāo)為P,與y軸的交點(diǎn)為A,求P、A兩點(diǎn)的坐標(biāo);
(2)將二次函數(shù)的圖象向上平移1個單位,設(shè)平移后的圖象與軸的交點(diǎn)為B、C(其中點(diǎn)B在點(diǎn)C的左側(cè)),求B、C兩點(diǎn)的坐標(biāo)及tan∠APB的值。
解:(1)

∴頂點(diǎn)P的坐標(biāo)為:
與y軸的交點(diǎn)坐標(biāo)為:;
(2)平移后的解析式為:
令y=0,得

∴平移后的圖象與x軸的交點(diǎn)坐標(biāo)為:
可得





。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增大
1
a
分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省自貢市2011年初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷 題型:044

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.

(1)求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;

(2)請找出在直線上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;

(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+x(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少數(shù)學(xué)公式,縱坐標(biāo)增大數(shù)學(xué)公式分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加數(shù)學(xué)公式,縱坐標(biāo)增加數(shù)學(xué)公式分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省自貢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案