【題目】已知拋物線y=a(x﹣1)2﹣3(a≠0)的圖象與y軸交于點A(0,﹣2),頂點為B.

(1)試確定a的值,并寫出B點的坐標(biāo);

(2)若一次函數(shù)的圖象經(jīng)過A、B兩點,試寫出一次函數(shù)的解析式;

(3)試在x軸上求一點P,使得△PAB的周長取最小值;

(4)若將拋物線平移m(m≠0)個單位,所得新拋物線的頂點記作C,與原拋物線的交點記作D,問:點O、C、D能否在同一條直線上?若能,請求出m的值;若不能,請說明理由.

【答案】(1)a=1,B(1,-3);(2)y=-x-2;(3)P(,0);(4)能,m=2或-3.

【解析】

試題分析:(1)把A點坐標(biāo)代入解析式中可求得a值,根據(jù)頂點式可寫出B點坐標(biāo);(2)由(1)可知A、B坐標(biāo),直線AB解析式可求出;(3)找出A點關(guān)于x軸對稱點E,連接BE交x軸于點P.求出BE解析式即可求出點P坐標(biāo);(4)如圖2,設(shè)拋物線向右平移m(若m>0表示向右平移,若m<0表示向左平移)個單位,得到新的拋物線的頂點C(1+m,3),可求出直線OC解析式,解新舊拋物線聯(lián)立方程組求得交點D坐標(biāo)為(, ),把D坐標(biāo)代到OC解析式中得到m=2或m=3,即可得到結(jié)論.

試題解析:(1)把A(0,2)代入y=a(x1)23得2=a(01)23,解得:a=1,y=(x1)23,B(1,3);(2)設(shè)一次函數(shù)的解析式為y=kx+b,將A、B兩點的坐標(biāo)代入得:,

解得,一次函數(shù)的解析式為y=x2;(3)A點關(guān)于x軸的對稱點記作E,則E(0,2),

如圖1,連接EB交x軸于點P,則P點即為所求,設(shè)直線BE的解析式為y=px+q,則 ,解得,直線BE:y=5x+2,當(dāng)y=0時,0=-5x+2,解得x=-.P(,0);(4)如圖2,設(shè)拋物線向右平移m(若m>0表示向右平移,若m<0表示向左平移)個單位,則所得新的拋物線的頂點C(1+m,3),直線OC的解析式為,新拋物線解析式為 y=(x1m)23,解 ,得,兩拋物線的交點D( ),代入直線OC解析式中得,解得:m=2或m=3,O、C、D三點能夠在同一直線上,

此時m=2或m=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作CD∥OF交AB的延長線于點D,延長AF交直線CD于點H.

(1)求證:CD是半圓O的切線;

(2)若DH=,求EF的長和半徑OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從一個n邊形的某個頂點出發(fā),分別連接這個點與其他頂點可以把這個n邊形分割成三角形個數(shù)是(
A.3個
B.(n﹣1)個
C.5個
D.(n﹣2)個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“三次投擲一枚硬幣,三次正面朝上”這一事件是( )
A.必然事件
B.隨機事件
C.不可能事件
D.確定事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線m外有一定點A,A到直線m的距離是7 cm,B是直線m上的任意一點,則線段AB的長度:AB___________7 cm.(填寫“<”“>”“=”“≤”“≥”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個解為1-2的一元二次方程______

查看答案和解析>>

同步練習(xí)冊答案