【題目】如圖在平面直角坐標(biāo)系中,O是坐標(biāo)原點,長方形OACB的頂點AB分別在x,y軸上,已知OA3,點Dy軸上一點,其坐標(biāo)為(0,1),CD5,點P從點A出發(fā)以每秒1個單位的速度沿線段ACB的方向運動,當(dāng)點P與點B重合時停止運動,運動時間為t

1)求B,C兩點坐標(biāo);

2)①求OPD的面積S關(guān)于t的函數(shù)關(guān)系式;

②當(dāng)點D關(guān)于OP的對稱點E落在x軸上時,求點E的坐標(biāo);

3)在(2)②情況下,直線OP上求一點F,使FE+FA最。

【答案】1B05),C3,5);(2)①S=-;②E1,0);(3AD的長度就是AF+EF的最小值,則點F即為所求

【解析】

1)由四邊形OACB是矩形,得到BCOA3,在RtBCD中,由勾股定理得到BD 4OB5,從而求得點的坐標(biāo);

2)①當(dāng)點PAC上時,OD1,BC3,S,當(dāng)點在BC上時,OD1BP5+3t8t,得到S×1×8t)=﹣ t+4;

②當(dāng)點D關(guān)于OP的對稱點落在x軸上時,得到點D的對稱點是(1,0),求得E1,0);

3)由點D、E關(guān)于OP對稱,連接ADOPF,找到點F,從而確定AD的長度就是AF+EF的最小值,在RtAOD中,由勾股定理求得AD ,即AF+EF的最小值=

解:(1)∵四邊形OACB是矩形,

BCOA3,

RtBCD中,∵CD5BC3,

BD 4,

OB5,

B0,5),C3,5);

2)①當(dāng)點PAC上時,OD1BC3,

S,

當(dāng)點在BC上時,OD1,BP5+3t8t,

S ×1×8t)=﹣ t+4;(t≥0

②當(dāng)點D關(guān)于OP的對稱點落在x軸上時,點D的對稱點是(1,0),

E1,0);

3)如圖2∵點D、E關(guān)于OP對稱,連接ADOPF,

AD的長度就是AF+EF的最小值,則點F即為所求.

故答案為:(1B0,5),C3,5);(2)①S=-;②E1,0);(3AD的長度就是AF+EF的最小值,則點F即為所求

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2求道路的寬;

(2)現(xiàn)在對該矩形區(qū)域進行改造,如圖2,在正中央建一個與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AB與弦CD互相垂直,垂足為點E. O的切線BF與弦AD的延長線相交于點F,且AD=3,cosBCD= .

(1)求證:CDBF;

(2)求O的半徑;

(3)求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市體育中考項目分為必測項目和選測項目,必測項目為:跳繩、立定跳遠;選測項目為50米、實心球、踢毽子三項中任選一項.

(1)每位考生將有 種選擇方案;

(2)用畫樹狀圖或列表的方法求小穎和小華將選擇同種方案的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,AB5,AEBC邊上的高,AE4,則對角線BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時,y>0,其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中, DE,F三點分別在ABAC,BC上,過點D的直線與線段EF的交點為點M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.

(1)求證:DMAC

(2)若DEBC,∠C =50°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

①拋物線與x軸的一個交點為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;③拋物線的對稱軸是直線;④在對稱軸左側(cè),yx增大而增大.從上表可知,以上說法中正確的是____________.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某臺風(fēng)中心位于O點,臺風(fēng)中心以 的速度向北偏西方向移動,在半徑的范圍內(nèi)將受影響,城市AO點正西方向與O點相距處,試問:

1市是否會受此臺風(fēng)影響,并說明理由;

2)如受影響,則受影響的時間有多長?

查看答案和解析>>

同步練習(xí)冊答案