【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
【答案】(1)y=- (2)點(diǎn)P(﹣6,0)或(﹣2,0)
【解析】
(1)利用點(diǎn)A在y=﹣x+4上求a,進(jìn)而代入反比例函數(shù)求k.
(2)聯(lián)立方程求出交點(diǎn),設(shè)出點(diǎn)P坐標(biāo)表示三角形面積,求出P點(diǎn)坐標(biāo).
(1)把點(diǎn)A(﹣1,a)代入y=x+4,得a=3,
∴A(﹣1,3)
把A(﹣1,3)代入反比例函數(shù)
∴k=﹣3,
∴反比例函數(shù)的表達(dá)式為
(2)聯(lián)立兩個(gè)函數(shù)的表達(dá)式得
解得
或
∴點(diǎn)B的坐標(biāo)為B(﹣3,1)
當(dāng)y=x+4=0時(shí),得x=﹣4
∴點(diǎn)C(﹣4,0)
設(shè)點(diǎn)P的坐標(biāo)為(x,0)
∵,
∴
解得x1=﹣6,x2=﹣2
∴點(diǎn)P(﹣6,0)或(﹣2,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,△AOB是等邊三角形,OE⊥BD交BC于點(diǎn)E,CD=1,則CE的長(zhǎng)為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1 cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開(kāi)始沿BC向點(diǎn)C以2cm/s的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x秒(x>0).
(1)求幾秒后,PQ的長(zhǎng)度等于5 cm.
(2)運(yùn)動(dòng)過(guò)程中,△PQB的面積能否等于8 cm2?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC 中,∠C=90°,∠B=30°,以點(diǎn) A 為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交 AB,AC 于點(diǎn)M 和 N,再分別以 M,N 為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn) P,連接 AP 并延長(zhǎng)交 BC 于點(diǎn)D,則下列說(shuō)法中:①AD 是∠BAC 的平分線(xiàn);②點(diǎn) D 在線(xiàn)段 AB 的垂直平分線(xiàn)上;③S△DAC:S△ABC=1:2,正確的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線(xiàn)BC上方的拋物線(xiàn)上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線(xiàn)上取點(diǎn)F,使得BF=EF.
(1)判斷直線(xiàn)EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線(xiàn)段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)為正半軸上一動(dòng)點(diǎn), 連接,以線(xiàn)段為邊在第四象限內(nèi)作等邊三角形,連接并延長(zhǎng),交軸于點(diǎn).
(1)求證:≌;
(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出的度數(shù);如果變化,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,在中,,,點(diǎn)是的中點(diǎn),點(diǎn)是邊上一點(diǎn),直線(xiàn)垂直于直線(xiàn)于點(diǎn),交于點(diǎn).
(1)求證:.
(2)如圖2,直線(xiàn)垂直于直線(xiàn),垂足為點(diǎn),交的延長(zhǎng)線(xiàn)于點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com