今年,6月12日為端午節(jié).在端午節(jié)前夕,三位同學到某超市調(diào)研一種進價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息,解答小華的問題.
(1)設(shè)定價為x元,利潤為y元,則銷售量為:(500-
x-3
0.1
×10),
由題意得,y=(x-2)(500-
x-3
0.1
×10)
=-100x2+1000x-1600
=-100(x-5)2+900,
當y=800時,
-100(x-5)2+900=800,
解得:x=4或x=6,
∵售價不能超過進價的240%,
∴x≤2×240%,
即x≤4.8,
故x=4,
即當定價為4元時,能實現(xiàn)每天800元的銷售利潤;

(2)由(1)得y=-100(x-5)2+900,
∵-100<0,
∴函數(shù)圖象開口向下,且對稱軸為x=5,
∵x≤4.8,
故當x=4.8時函數(shù)能取最大值,
即ymax=-100(4.8-5)2+900=896.
故800元的銷售利潤不是最多,當定價為4.8元時,每天的銷售利潤最大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數(shù)的解析式;
(2)設(shè)點M為線段OC上一點,且∠MPC=∠BAC,求點M的坐標;
說明:若(2)你經(jīng)歷反復(fù)探索沒有獲得解題思路,請你在不改變點M的位置的情況下添加一個條件解答此題,此時(2)最高得分為3分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC是⊙O的直徑,點A在圓上,且AB=AC=4.P為AB上一點,過P作PE⊥AB分別交BC、OA于E、F.
(1)設(shè)AP=1,求△OEF的面積;
(2)設(shè)AP=a(0<a<2),△APF、△OEF的面積分別記為S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一個實數(shù)a,使S<
15
3
?若存在,求出一個a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形OABC中,ABOC,O為坐標原點,點A在y軸正半軸上,點C在x軸正半軸上,點B的坐標為(2,2
3
),∠BCO=60°,OH⊥BC,垂足為H.動點P從點H出發(fā),沿線段HO向點O運動,動點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度.設(shè)點P運動的時間為ts.
(1)求OH的長;
(2)若△OPQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.并求t為何值時,△OPQ的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

明珠大劇場座落在聊城東昌湖西岸,其上部為能夠旋轉(zhuǎn)的拱形鋼結(jié)構(gòu),并且具有開啟、閉合功能,全國獨-無二,如圖1.舞臺頂部橫剖面拱形可近似看作拋物線的一部分,其中舞臺高度1.15米,臺口高度13.5米,臺口寬度29米,如圖2.以ED所在直線為x軸,過拱頂A點且垂直于ED的直線為y軸,建立平面直角坐標系.
(1)求拱形拋物線的函數(shù)關(guān)系式;
(2)舞臺大幕懸掛在長度為20米的橫梁MN上,其下沿恰與舞臺面接觸,求大幕的高度?(精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EFBD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用長為100cm的鐵絲做一個矩形框子.
(1)能做成矩形框的面積為800cm2嗎?如果能求出長和寬,如果不能請說明理由.
(2)請說明能圍成的矩形最大面積是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點B,求這個二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)P為對稱軸上一動點,求△APC周長的最小值;
(3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標為______.

查看答案和解析>>

同步練習冊答案