【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A0,3)、B3,4)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是1個單位長度).

1)畫出△ABC關(guān)于x軸的軸對稱圖形,得到的△A1B1C1,點C1的坐標是   ;

2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為21,點C2的坐標是 

3)△A2B2C2的面積是   平方單位.

【答案】1)見解析,(2,-2);(2)(1,0),見解析;(310

【解析】

1)直接利用平移的性質(zhì)得出各對應點位置進而得出答案;

2)利用位似圖形的性質(zhì)得出對應點位置進而得出答案;

3)直接利用A2B2C2所在矩形面積減去周圍三角形面積進而得出答案.

1)如圖所示:A1B1C1,即為所求,C12,-2);

2)如圖所示:A2B2C2,即為所求,C21,0);

3A2B2C2的面積是:4×6-×2×6-×2×4-×2×4=10

故答案為:10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.

(1)證明:AC=AF;

(2)若AD=2,AF=,求AE的長;

(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形,如果點A的坐標為(1,0),那么點的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中的點P和圖形M,給出如下的定義:若在圖形M存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點

(1)當⊙O的半徑為2時,

①在點 中,⊙O的關(guān)聯(lián)點是_______________.

②點P在直線y=-x上,若P⊙O 的關(guān)聯(lián)點,求點P的橫坐標的取值范圍

(2)⊙C 的圓心在x軸上,半徑為2,直線y=-x+1x軸、y軸交于點A、B.若線段AB上的所有點都是⊙C的關(guān)聯(lián)點,直接寫出圓心C的橫坐標的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在Rt中,,點是斜邊的中點,,且于點,聯(lián)結(jié)

1)求證: ;

2)當時,求的值;

3)在(2)的條件下,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圓0的直徑AB垂直于弦CD于點E,CG是圓O的切線交AB的延長線于點G,連接CO并延長交AD于點F,且CFAD.

1)試問:CG//AD嗎?說明理由:

2)證明:點EOB的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為鳳凰方程.已知鳳凰方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天貓店銷售某種規(guī)格學生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.

(1)若售價上漲m元,每月能售出   個排球(用m的代數(shù)式表示).

(2)為迎接雙十一,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400

查看答案和解析>>

同步練習冊答案