精英家教網 > 初中數學 > 題目詳情
二次函數y=ax2+bx+c的圖象如圖所示,當函數值y<0時,x的取值范圍為( )

A.x<-1或x>3
B.-1<x<3
C.x≤-1或x≥3
D.-1≤x≤3
【答案】分析:根據題意,y<0時即圖象在x軸下方時,觀察圖象可得答案.
解答:解:根據題意,要求當y<0時即圖象在x軸下方時自變量x的取值范圍,
觀察圖象易得,當-1<x<3時,二次函數的圖象在x軸下方,
故選B.
點評:本題考查了二次函數與不等式,屬于基礎題,注重數形結合的思想,從函數的圖象上尋找突破.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案