精英家教網 > 初中數學 > 題目詳情

【題目】在直角坐標系XOY中,二次函數圖像的頂點坐標為,且與x軸的兩個交點間的距離為6.

1)求二次函數解析式;

2)在x軸上方的拋物線上,是否存在點Q,使得以點Q、A、B為頂點的三角形與ABC相似?如果存在,請求出Q點的坐標,如果不存在,請說明理由.

【答案】1;(2)存在點

【解析】

1)由已知開設解析式:,B7,0),進一步可求出結果;(2)過點OCDx軸于D,過點QQEx軸于E,利用三角函數求出E,Q坐標,證明點Q在拋物線上,由拋物線的對稱性,還存在一點,使ABQ′∽△CAB.

1)由已知開設解析式:,B7,0

B70)代入,求得a=

故所求解析式為

2)在x軸上方的拋物線上存在點Q,使得以點Q、A、B為頂點的三角形與ABC相似,

因為ABC為等腰三角形,

AB=BQ,

AB=6,

BQ=6

過點OCDx軸于D,則AD=3,CD=

∴∠BAC=∠ABC=30°,∴∠ACB=120°,∴∠ABQ=120°

過點QQEx軸于E,則QBE=60°,

QE=BQsin60°=,

BE=3,

E(10, 0),.

x=10時,

Q在拋物線上,

由拋物線的對稱性,還存在一點,

使ABQ′∽△CAB故存在點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊ABC中,AC9,點OAC上,且AO3,點PAB上一動點,連結OP,將線段OP繞點O逆時針旋轉60°得到線段OD,要使點D恰好落在BC上,則AP的長是(  )

A.3B.5C.6D.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩人在玩轉盤游戲時,把轉盤A、B分別分成4等份、3等份,并在每一份內標上數字,如圖所示.游戲規(guī)定,轉動兩個轉盤停止后,指針所指的兩個數字之和為奇數時,甲獲勝;為偶數時,乙獲勝.

(1)用列表法(或畫樹狀圖)求甲獲勝的概率;

(2)你認為這個游戲規(guī)則對雙方公平嗎?請簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某廠家生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD,線段CD分別表示該產品每千克生產成本y1(單位:元),銷售價y2(單位:元)與產量x(單位:kg)之間的函數關系.

1)請解釋圖中點D的實際意義.

2)求線段CD所表示的y2x之間的函數表達式.

3)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】準備一張矩形紙片,按如圖操作:

將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

1)求證:四邊形BFDE是平行四邊形;

2)若四邊形BFDE是菱形,BE2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:三角形一邊上的點將該邊分為兩條線段,且這兩條線段的積等于這個點到該邊所對頂點連線的平方,則稱這個點為三角形該邊的好點”.如圖1ABC中,點DBC邊上一點,連結AD,若,則稱點DABCBC邊上的好點”.

1)如圖2ABC的頂點是網格圖的格點,請僅用直尺畫出AB邊上的一個好點”.

2ABC中,BC=9,,,點DBC邊上的好點,求線段BD的長.

3)如圖3,ABC的內接三角形,OHAB于點H,連結CH并延長交于點D.

①求證:點HBCDCD邊上的好點”.

②若的半徑為9,∠ABD=90°,OH=6,請直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某足球運動員站在點O處練習射門.將足球從離地面0.5mA處正對球門踢出(點Ay軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數關系yat2+5t+c,己知足球飛行0.8s時,離地面的高度為3.5m

1a   ,c   ;

2)當足球飛行的時間為多少時,足球離地面最高?最大高度是多少?

3)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數關系x10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

同步練習冊答案