【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
(3)求證:CE=2AF .
【答案】(1)50(2)證明見解析(3)證明見解析
【解析】試題分析:(1)根據(jù)條件證明△ABC≌△ADE,然后四邊形ABCD的面積可轉(zhuǎn)化為等腰直角△ACE的面積,然后利用三角形的面積公式計算即可;(2)根據(jù)條件證明∠ACB=∠ACE=45°即可;(3))過點A作AG⊥CG,垂足為點G,利用角的平分線的性質(zhì)證得AF=AG,利用直角三角形斜邊上的中線的性質(zhì)和等腰三角形的性質(zhì)證得CG=AG=GE,即可得出結(jié)論.
試題解析:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD
在△ABC和△ADE中
∴△ABC≌△ADE(SAS)
∵
∴
(2)∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF
(3)過點A作AG⊥CG,垂足為點G
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE="2AF"
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點E,H為BC上一點,且BH=BA交AC于點F,連接FH.
⑴求證:AE=FH;
⑵作EG//BC交AC于點G若AG=5,AC=8,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,則 NP=( )
A. 2cm B. 3cm C. 4cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)請計算△ABC的面積;
(3)直接寫出△ABC關(guān)于x軸對稱的三角形△A2B2C2的各點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與y軸的交點為A,與x軸的正半軸分別交于點B(b,0),C(c,0).
(1)當(dāng)b=1時,求拋物線相應(yīng)的函數(shù)表達式;
(2)當(dāng)b=1時,如圖,E(t,0)是線段BC上的一動點,過點E作平行于y軸的直線l與拋物線的交點為P.求△APC面積的最大值;
(3)當(dāng)c =b+ n.時,且n為正整數(shù).線段BC(包括端點)上有且只有五個點的橫坐標(biāo)是整數(shù),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中放入一個矩形紙片ABCO,將紙片翻折后,點B恰好落在軸上,記為,折痕為CE.直線CE的關(guān)系式是,與軸相交于點F,且AE=3.
(1)求OC長度;
(2)求點的坐標(biāo);
(3)求矩形ABCO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓弧AB.
(1)作出弧AB所在圓的圓心O;(用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法)
(2)若弧AB的中點C到弦AB的距離為20m,AB=80m,求弧AB所在圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com