(2010•貴陽)如圖,在直角坐標(biāo)系中,已知點M的坐標(biāo)為(1,0),將線段OM繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M1,使得M1M⊥OM,得到線段OM1;又將線段OM1繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2,如此下去,得到線段OM3,OM4,…,OMn
(1)寫出點M5的坐標(biāo);
(2)求△M5OM6的周長;
(3)我們規(guī)定:把點Mn(xn,yn)(n=0,1,2,3…)的橫坐標(biāo)xn,縱坐標(biāo)yn都取絕對值后得到的新坐標(biāo)(|xn|,|yn|)稱之為點Mn的“絕對坐標(biāo)”.根據(jù)圖中點Mn的分布規(guī)律,請你猜想點Mn的“絕對坐標(biāo)”,并寫出來.

【答案】分析:(1)根據(jù)等腰直角三角形的性質(zhì)分別求出M1、M2、M3、M4的坐標(biāo),然后求M5的坐標(biāo).
(2)要求周長,就先根據(jù)各點的坐標(biāo)求出三角形的三邊長,然后再求周長.
(3)點Mn的“絕對坐標(biāo)”可分三類情況來一一分析:當(dāng)點M在x軸上時;當(dāng)點M在各象限的分角線上時;當(dāng)點M在y軸上時.
解答:解:(1)由題得:OM=MM1
∴M1的坐標(biāo)為(1,1).
同理M2的坐標(biāo)為(0,2),
M3的坐標(biāo)為(-2,2),
M4的坐標(biāo)為(-4,0),
M5(-4,-4).                                              (4分)

(2)由規(guī)律可知,,

OM6=8.                                                      (6分)
∴△M5OM6的周長是.                                   (8分)

(3)由題意知,OM旋轉(zhuǎn)8次之后回到x軸的正半軸,
在這8次旋轉(zhuǎn)中,點分別落在坐標(biāo)象限的分角線上或x軸或y軸上,
但各點“絕對坐標(biāo)”的橫、縱坐標(biāo)均為非負數(shù),
因此,各點的“絕對坐標(biāo)”可分三種情況:
①當(dāng)n=4k時(其中k=0,1,2,3,),點在x軸上,則Mn,0);(9分)
②當(dāng)n=4k-2時(其中k=1,2,3,),點在y軸上,點Mn(0,);(10分)
③當(dāng)n=2k-1時,點在各象限的角平分線上,則點Mn(2,2).(12分)
點評:本題綜合考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)系的知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:填空題

(2010•貴陽)如圖,河岸AD、BC互相平行,橋AB垂直于兩岸,從C處看橋的兩端A、B,夾角∠BCA=60°,測得BC=7m,則橋長AB=    m(結(jié)果精確到1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省貴陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•貴陽)如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”,圖5中四邊形ABCD就是一個格點四邊形.
(1)圖中四邊形ABCD的面積為______;
(2)在《答題卡》所給的方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省貴陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•貴陽)如圖,河岸AD、BC互相平行,橋AB垂直于兩岸,從C處看橋的兩端A、B,夾角∠BCA=60°,測得BC=7m,則橋長AB=    m(結(jié)果精確到1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省南通市啟東市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•貴陽)如圖,在直角坐標(biāo)系中,已知點M的坐標(biāo)為(1,0),將線段OM繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M1,使得M1M⊥OM,得到線段OM1;又將線段OM1繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2,如此下去,得到線段OM3,OM4,…,OMn
(1)寫出點M5的坐標(biāo);
(2)求△M5OM6的周長;
(3)我們規(guī)定:把點Mn(xn,yn)(n=0,1,2,3…)的橫坐標(biāo)xn,縱坐標(biāo)yn都取絕對值后得到的新坐標(biāo)(|xn|,|yn|)稱之為點Mn的“絕對坐標(biāo)”.根據(jù)圖中點Mn的分布規(guī)律,請你猜想點Mn的“絕對坐標(biāo)”,并寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省黃山市潛口中學(xué)中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

(2010•貴陽)如圖,在直角坐標(biāo)系中,已知點M的坐標(biāo)為(1,0),將線段OM繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M1,使得M1M⊥OM,得到線段OM1;又將線段OM1繞原點O沿逆時針方向旋轉(zhuǎn)45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2,如此下去,得到線段OM3,OM4,…,OMn
(1)寫出點M5的坐標(biāo);
(2)求△M5OM6的周長;
(3)我們規(guī)定:把點Mn(xn,yn)(n=0,1,2,3…)的橫坐標(biāo)xn,縱坐標(biāo)yn都取絕對值后得到的新坐標(biāo)(|xn|,|yn|)稱之為點Mn的“絕對坐標(biāo)”.根據(jù)圖中點Mn的分布規(guī)律,請你猜想點Mn的“絕對坐標(biāo)”,并寫出來.

查看答案和解析>>

同步練習(xí)冊答案