【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:(參考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)請從下列三個不同的角度對這次測試結(jié)果進行
①從平均數(shù)和方差相結(jié)合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰參加,并說明理由.
【答案】(1)1.2,7,7.5;(2)甲,乙,乙,理由見解析.
【解析】分析: (1)根據(jù)統(tǒng)計表,結(jié)合平均數(shù)、方差、中位數(shù)的定義,即可求出需要填寫的內(nèi)容.
(2)①可分別從平均數(shù)和方差兩方面著手進行比較;
②可分別從平均數(shù)和中位數(shù)兩方面著手進行比較;
③可從具有培養(yǎng)價值方面說明理由.
詳解:
解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,
乙的平均數(shù):(2+4+6+8+7+7+8+9+9+10)÷10=7,
乙的中位數(shù):(7+8)÷2=7.5,
填表如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 7 | 1.2 | 7 |
乙 | 7 | 5.4 | 7.5 |
(2)①從平均數(shù)和方差相結(jié)合看,甲的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看,乙的成績好些;
③選乙參加.
理由:綜合看,甲發(fā)揮更穩(wěn)定,但射擊精準(zhǔn)度差;乙發(fā)揮雖然不穩(wěn)定,但擊中高靶環(huán)次數(shù)更多,成績逐步上升,提高潛力大,更具有培養(yǎng)價值,應(yīng)選乙.
故答案為:(1)1.2,7,7.5;(2)①甲;②乙.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列方程中,一元二次方程的個數(shù)是( 。
①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣=0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,P點在∠AOB內(nèi)部,M點在射線OA上,將線段PM繞P點逆時針旋轉(zhuǎn)90°,M點恰好落在OB上的N點(OM>ON),若PM=,ON=8,則OM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三(1)班要從2男2女共4名同學(xué)中選人做晨會的升旗手.
(1)若從這4人中隨機選1人,則所選的同學(xué)性別為男生的概率是 .
(2)若從這4人中隨機選2人,求這2名同學(xué)性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC向外作兩個等邊三角形△ABD,△ACE.連接BE、CD交點F,連接AF.
(1)求證:△ACD≌△AEB;
(2)求證:AF+BF+CF=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) (a≠0)的圖象如圖所示,
有下列結(jié)論:
①a、b同號;
②當(dāng)x=1和x=3時,函數(shù)值相等;
③4a+b=0;
④當(dāng)-1<x<5時,y<0.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線.
(2)若PB=3,DB=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com