如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
證明:(1)如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4。
∵∠1=∠3+∠5,∠2=∠4+∠6,
∴∠1=∠2。
∴∠5=∠6。
∵在△ADE與△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)。
∴AE=CF。
(2)∵∠1=∠2,∴DE∥BF。
又∵由(1)知△ADE≌△CBF,
∴DE=BF。
∴四邊形EBFD是平行四邊形。
【考點】平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì)
【解析】
試題分析:(1)通過證明△ADE≌△CBF,由全等三角的對應(yīng)邊相等證得AE=CF。
(2)根據(jù)平行四邊形的判定定理:對邊平行且相等的四邊形是平行四邊形證得結(jié)論。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com