【題目】已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連接MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.

(1)試直接寫出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動,過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連接OP.
①若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo);
②試問在拋物線的對稱軸上是否存在一點(diǎn)T,使得|TO﹣TB|的值最大?

【答案】
(1)

解:依題意得:D(﹣ ,2);


(2)

解:①∵OC=3,BC=2,

∴B(3,2);

∵拋物線經(jīng)過原點(diǎn),

∴設(shè)拋物線的解析式為y=ax2+bx (a≠0)

又拋物線經(jīng)過點(diǎn)B(3,2)與點(diǎn)D(﹣ ,2);

解得:

∴拋物線的解析式為y=

∵點(diǎn)P在拋物線上,

∴設(shè)點(diǎn)P(x, );

1)、若△PQO∽△DAO,則 ,

解得:x1=0(舍去)或x2=

∴點(diǎn)P( );

2)、若△OQP∽△DAO,則 ,

解得:x1=0(舍去)或x2= ,

∴點(diǎn)P( ,6);

②存在點(diǎn)T,使得|TO﹣TB|的值最大.

拋物線y= 的對稱軸為直線x= ,設(shè)拋物線與x軸的另一個交點(diǎn)為E,則點(diǎn)E( ,0);

∵點(diǎn)O、點(diǎn)E關(guān)于直線x= 對稱,

∴TO=TE

要使得|TO﹣TB|的值最大,

即是使得|TE﹣TB|的值最大,

根據(jù)三角形兩邊之差小于第三邊可知,當(dāng)T、E、B三點(diǎn)在同一直線上時,|TE﹣TB|的值最大;

設(shè)過B、E兩點(diǎn)的直線解析式為y=kx+b(k≠0),

解得:

∴直線BE的解析式為y= x﹣2;

當(dāng)x= 時,y=

∴存在一點(diǎn)T( ,﹣1)使得|TO﹣TB|最大.


【解析】(1)由于M是AB的中點(diǎn),即可得到AM= ,由此可求出M點(diǎn)的坐標(biāo),將M點(diǎn)坐標(biāo)向左平移3個單位即可得到點(diǎn)D的坐標(biāo);(2)①根據(jù)B、D的坐標(biāo)即可確定拋物線的解析式,設(shè)出P點(diǎn)的橫坐標(biāo),根據(jù)拋物線的解析式可得到P點(diǎn)縱坐標(biāo)的表達(dá)式;由于∠PQO=∠DAO=90°,若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,則有兩種情況:1)、△PQO∽△DOA,2)、△OQP∽△DAO;根據(jù)上述兩種情況所得的不同比例線段,即可求出P點(diǎn)的坐標(biāo);②由于D、B關(guān)于拋物線的對稱軸對稱,若|TO﹣TB|的值最大,那么T點(diǎn)必為直線DO與拋物線對稱軸的交點(diǎn),根據(jù)拋物線的解析式可求出其對稱軸方程,根據(jù)D點(diǎn)的坐標(biāo)可求得直線DO的解析式,聯(lián)立兩個函數(shù)的解析式,即可求得T點(diǎn)的坐標(biāo).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的O交BC于點(diǎn)D,過點(diǎn)D作EF⊥AC于點(diǎn)E,交AB的延長線于點(diǎn)F.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)如果AB=5,BC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y= (x>0)的圖像經(jīng)過線段OA的端點(diǎn)A,O為原點(diǎn),作AB⊥x軸于點(diǎn)B,點(diǎn)B的坐標(biāo)為(2,0),tan∠AOB= ,將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)y= (x>0)的圖像恰好經(jīng)過DC的中點(diǎn)E.

(1)求k的值和直線AE的函數(shù)表達(dá)式;
(2)若直線AE與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,請你探索線段AN與線段ME的大小關(guān)系,寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,∠B=60°,D為AB的中點(diǎn),∠EDF=90°,DE交AC于點(diǎn)G,DF經(jīng)過點(diǎn)C.

(1)求∠ADE的度數(shù);
(2)如圖2,將圖1中的∠EDF繞點(diǎn)D順時針方向旋轉(zhuǎn)角α(0°<α<60°),旋轉(zhuǎn)過程中的任意兩個位置分別記為∠E1DF1 , ∠E2DF2 , DE1交直線AC于點(diǎn)P,DF1交直線BC于點(diǎn)Q,DE2交直線AC于點(diǎn)M,DF2交直線BC于點(diǎn)N,求 的值;
(3)若圖1中∠B=β(60°<β<90°),(2)中的其余條件不變,判斷 的值是否為定值?如果是,請直接寫出這個值(用含β的式子表示);如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=60°,點(diǎn)B坐標(biāo)為(2,0),線段OA的長為6.將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)60°后,點(diǎn)A落在點(diǎn)C處,點(diǎn)B落在點(diǎn)D處.

(1)請?jiān)趫D中畫出△COD;
(2)求點(diǎn)A旋轉(zhuǎn)過程中所經(jīng)過的路程(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與不等式
(1)解方程:x2+3x﹣2=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠分發(fā)年終獎金,具體金額和人數(shù)如下表所示,則下列對這組數(shù)據(jù)的說法中不正確的是(

數(shù)

1

3

5

70

10

8

3

金額(元)

200000

150000

80000

15000

10000

8000

5000


A.極差是195000
B.中位數(shù)是15000
C.眾數(shù)是15000
D.平均數(shù)是15000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,乘積的最大值是   ;

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是   ;

(3)從中取出4張卡片.用學(xué)過的計(jì)算方法.使計(jì)算結(jié)果為24,請寫出這個運(yùn)算式.(至少寫出兩個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是(  )

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時,△ABD是等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案