【題目】如圖(1),在中,.若將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至Δ,使射線射線相交于點(diǎn)(不與、重合).

1)如圖(1),若,則 ;

2)如圖(2),連結(jié),若,試求出的度數(shù);

3)請(qǐng)?zhí)骄?/span>之間所滿足的數(shù)量關(guān)系,并加以證明.

【答案】1;(2;(3

【解析】

1)由兩直線平行內(nèi)錯(cuò)角相等即可得到答案;

2)根據(jù)旋轉(zhuǎn)前后線段和角相等及可得到為等腰直角三角形,從而得到的度數(shù);

(3)分兩種情況討論:①射線與線段相交于點(diǎn),②射線延長(zhǎng)線相交于點(diǎn),通過(guò)平行線的性質(zhì)和題中的角度關(guān)系即可得到答案.

解:(1)∵,

,

故答案為

2)由旋轉(zhuǎn)可知,

,

,即,

為等腰直角三角形,

;

3,

①如圖(2),射線與線段相交于點(diǎn),

由旋轉(zhuǎn)可知,

,

,

由于,

②如下圖,射線延長(zhǎng)線相交于點(diǎn)

由旋轉(zhuǎn)可知,

,

,

,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-x 2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知經(jīng)過(guò)B、C兩點(diǎn)的直線的表達(dá)式為y=-x+3.

(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P(m,0)是線段OB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交直線BC于D,交拋物線于E,EF∥x軸,交直線BC于F,DG∥x軸,F(xiàn)G∥y軸,DG與FG交于點(diǎn)G.設(shè)四邊形DEFG的面積為S,當(dāng)m為何值時(shí)S最大,最大值是多少?
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,將△OAC繞點(diǎn)Q逆時(shí)針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.若存在,求出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件:①∠AB=∠C; ②∠ABC=235; ③∠A=B= C;④∠A=∠B=2∠C⑤∠A=∠B= C,其中能確定ABC 為直角三角形的條件有 ( )

A.2 個(gè)B.3 個(gè)C.4 個(gè)D.5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于 的一元二次方程m +2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則 的取值范圍是( )
A.m<-1
B.m>1
C.m<1且m≠0
D.m>-1且m≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0,
其中結(jié)論正確有( )個(gè)。

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1 , x2 , 且x1 x2有下列結(jié)論:
①x1=2,x2=3;②m> ;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).
其中正確的結(jié)論是(填正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABM、N兩點(diǎn),DMEN相交于點(diǎn)F

1)若△CMN的周長(zhǎng)為15cm,求AB的長(zhǎng);

2)若∠MFN=70°,求∠MCN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABADAC5,∠DAB=∠DCB90°,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)O點(diǎn)作射線OC,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為______度;

2)在(1)旋轉(zhuǎn)過(guò)程中,當(dāng)旋轉(zhuǎn)至圖3的位置時(shí),使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案