【題目】甲、乙兩個(gè)袋中均有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)的數(shù)值分別為-7,-1,3,乙袋中的三張卡片上所標(biāo)的數(shù)值分別為-2,1,6.先從甲袋中隨機(jī)取出一張卡片,用x表示取出的卡片上標(biāo)的數(shù)值,再?gòu)囊掖须S機(jī)取出一張卡片,用y表示取出的卡片上標(biāo)的數(shù)值,把x、y分別作為點(diǎn)A的橫坐標(biāo)、縱坐標(biāo).
(1)用適當(dāng)?shù)姆椒▽?xiě)出點(diǎn)A(x,y)的所有情況;
(2)求點(diǎn)A落在第三象限的概率.
【答案】(1) 點(diǎn)A共有9種情況.(2).
【解析】分析:(1)根據(jù)取卡的方式,列表解答即可;
(2)點(diǎn)A落在第二象限(事件A)共有(-7,1)、(-1,1)、(-7,6)、(-1,6)四種情況,然后根據(jù)概率公式解答.
詳解:(1)用列表法:
7 | 1 | 3 | |
2 | (7,2) | (1,2) | (3,2) |
1 | (7,1) | (1,1) | (3,1) |
6 | (7,6) | (1,6) | (3,6) |
可知,點(diǎn)A共有9種情況.
(2)由(1)知點(diǎn)A的坐標(biāo)共有9種等可能的情況,點(diǎn)A落在第二象限(事件A)共有(7,1)、(1,1)、(7,6)、(1,6)四種情況.
所以P(A)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)多項(xiàng)式A=9xy+7xy-x-2,B=3xy-5xy+x+7
(1)求A-3B;
(2)若要使A-3B的值與x的取值無(wú)關(guān),試求y的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的頂點(diǎn)A、B坐標(biāo)分別為(1,1)、(3,1),若把等邊△ABC先沿x軸翻折,再向左平移1個(gè)單位”為第一次変換,則這樣連續(xù)經(jīng)過(guò)2017次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)問(wèn)題:用邊長(zhǎng)相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?
問(wèn)題探究:為了解決上述數(shù)學(xué)問(wèn)題,我們采用分類(lèi)討論的思想方法去進(jìn)行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?
第一類(lèi):選正三角形.因?yàn)檎切蔚拿恳粋(gè)內(nèi)角是60°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有6個(gè)正三角形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.
第二類(lèi):選正方形.因?yàn)檎叫蔚拿恳粋(gè)內(nèi)角是90°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有4個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.
第三類(lèi):選正六邊形.(仿照上述方法,寫(xiě)出探究過(guò)程及結(jié)論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?
第四類(lèi):選正三角形和正方形
在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正三角形和y個(gè)正方形的內(nèi)角可以拼成個(gè)周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周?chē)鷩@著3個(gè)正三角形和2個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌
第五類(lèi):選正三角形和正六邊形.(仿照上述方法,寫(xiě)出探究過(guò)程及結(jié)論)
第六類(lèi):選正方形和正六邊形,(不寫(xiě)探究過(guò)程,只寫(xiě)出結(jié)論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類(lèi):選正三角形、正方形和正六邊形三種圖形.(不寫(xiě)探究過(guò)程,只寫(xiě)結(jié)論),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD,已知AB=3,BC=4,設(shè)△PAB, △PBC, △PCD, △PDA,的面積分別為,,, ,以下判斷: ①PA+PB+PC+PD的最小值為10;②若△PAB≌△PCD,則△PAD≌△PBC ;③若=,則=;④若△PAB∽△PDA,則PA=2.4.其中正確的是_____________(把所有正確的結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)與求值
(1)若,則代數(shù)式的值為 .
(2)若,則代數(shù)式的值為 .
(3)若,請(qǐng)仿照以上方法求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和CD交于點(diǎn)O,∠COE=90°,OC平分∠AOF,∠COF=35°.
(1)求∠BOD的度數(shù);
(2)OE平分∠BOF嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長(zhǎng)為( 。
A. B. 3 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形紙片,其中, ,點(diǎn)分別是上的點(diǎn),連接.
(1)如圖1,若將紙片沿折疊,折疊后點(diǎn)剛好落在邊上點(diǎn)處,且,求的長(zhǎng);
(2)如圖2,若將紙片沿折疊,折疊后點(diǎn)剛好落在邊上點(diǎn)處,且.
試判斷四邊形的形狀,并說(shuō)明理由;
求折痕的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com