【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F,過點(diǎn)C作CE∥AB,與過點(diǎn)A的切線相交于點(diǎn)E,連接AD.
(1)求證:AD=AE;
(2)若AB=6,AC=4,求AE的長.
【答案】(1)詳見解析;(2).
【解析】
(1)利用平行線的性質(zhì),圓的性質(zhì)和等腰三角形的性質(zhì),證明△AEC和△ADC全等即可證明AD=AE,
(2)設(shè)AE=AD=x,CE=CD=y,利用勾股定理列出關(guān)于x和y的等式,即可求出AE的長.
(1)證明:∵AE與⊙O相切,AB是⊙O的直徑,
∴∠BAE=90°,∠ADB=90°,
∵CE∥AB,
∴∠E=90°,
∴∠E=∠ADB,
∵在△ABC中,AB=BC,
∴∠BAC=∠BCA,
∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,
∴∠BAC=∠ACE,
∴∠BCA=∠ACE,
又∵AC=AC,
∴△ADC≌△AEC(AAS),
∴AD=AE;
(2)解:設(shè)AE=AD=x,CE=CD=y,
則BD=(6﹣y),
∵△AEC和△ADB為直角三角形,
∴AE2+CE2=AC2,AD2+BD2=AB2,
AB=6,AC=4,AE=AD=x,CE=CD=y,BD=(6﹣y)代入,
解得:x=,y=,
即AE的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)
因式分解:.
解:將“”看成整體,令,則原式.
再將“”還原,原式.
上述解題用到的是“整體思想”,整體思想是數(shù)學(xué)解題中常用的一種思想方法.
(問題解決)
(1)因式分解:;
(2)因式分解:;
(3)證明:若為正整數(shù),則代數(shù)式的值一定是某個(gè)整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△ABC的外角∠ACM內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(Ⅰ)依題意補(bǔ)全圖形.
(Ⅱ)若∠ACN=α,求∠BDC的大小(用含α的式子表示).
(Ⅲ)若PA=x,PC=y,求PB的長度(用x,y的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是( 。
A. 6→3 B. 7→16 C. 7→8 D. 6→15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)(k,b為常數(shù)),下表中給出5組自變量及其對應(yīng)的函數(shù)值:
…… | -1 | 0 | 1 | 2 | 3 | ||
…… | -2 | 1 | 4 | 8 | 10 | …… |
其中只有1個(gè)函數(shù)值計(jì)算有誤,則這個(gè)錯(cuò)誤的函數(shù)值是( )
A.1B.4C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點(diǎn),連接DF、EF,DE、EF與AC交于點(diǎn)O,DE與AB交于點(diǎn)G,連接OG,若∠BAC=30°,下列結(jié)論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理過程:
如圖所示,點(diǎn)E在△ABC外部,點(diǎn)D在BC邊上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC,求證:△ABC≌△ADE.
證明:∵ ∠E=∠C(已知),
∠AFE=∠DFC(_________________),
∴∠2=∠3(______________________),
又∵∠1=∠3(_________________),
∴ ∠1=∠2(等量代換),
∴__________+∠DAC= __________+∠DAC(______________________),
即∠BAC =∠DAE,
在△ABC和△ADE中
∵
∴△ABC≌△ADE(_________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com