【題目】P是拋物線yx24x5上一點(diǎn),過點(diǎn)PPM⊥x軸,PN⊥y軸,垂足分別是M,N,則PMPN的最小值是(   )

A.3B.C.D.5

【答案】B

【解析】

設(shè)點(diǎn)P的坐標(biāo)為(m, m2-4m+5) ,構(gòu)造出PM+ PN的值與m的函數(shù)關(guān)系,利用二次函數(shù)的性質(zhì)解決問題即可.

拋物線y=x2 -4x+5=16-20=-4<0,可知拋物線的值恒為正,

設(shè)P(m,m2-4m+5) ,

PM=|m2 - 4m+5|,PN=|m|

當(dāng)m<0時(shí), PM+ PN=|m2- 4m+5|+|m|= m2 - 4m+5-m= m2-5m+ 5=,

此時(shí)m=不符合m<0;

當(dāng)m=0時(shí),y=5,PM+ PM的值是5;

當(dāng)m>0時(shí),PM+ PN=|m2 - 4m+ 5|+|m|=m2 -4m+5+m=m2-3m + 5=,

所以當(dāng)m=時(shí), PM+ PM的最小值為,

綜上,PM+ PM的最小值是

故答案為:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點(diǎn)EAD的中點(diǎn),連接CE,并延長(zhǎng)CEBA的延長(zhǎng)線交于點(diǎn)F, 若∠BCF=90°,則∠D的度數(shù)為(

A.60°B.55°C.45°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮在研究矩形的面積S與矩形的邊長(zhǎng)x,y之間的關(guān)系時(shí),得到下表數(shù)據(jù):

x

0.5

1

1.5

2

3

4

6

12

y

12

6

3

2

1.5

1

0.5

結(jié)果發(fā)現(xiàn)一個(gè)數(shù)據(jù)被墨水涂黑了.

1)被墨水涂黑的數(shù)據(jù)為_________;

2yx的函數(shù)關(guān)系式為_________,且yx的增大而_________;

3)如圖是小亮畫出的y關(guān)于x的函數(shù)圖象,點(diǎn)B、E均在該函數(shù)的圖象上,其中矩形的面積記為,矩形的面積記為,請(qǐng)判斷的大小關(guān)系,并說明理由;

4)在(3)的條件下,于點(diǎn)G,反比例函數(shù)的圖象經(jīng)過點(diǎn)G于點(diǎn)H,連接,則四邊形的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的直徑,OBCD交⊙O于點(diǎn)B,連接CB,AB是⊙O的弦,ABCD于點(diǎn)E,FCD的延長(zhǎng)線上一點(diǎn)且AFEF

1)判斷AF和⊙O的位置關(guān)系并說明理由.

2)若∠ABC60°,BC1cm,求陰影部分的面積.(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

x60

x

售價(jià)(元/件)

200

100

若用1800元購(gòu)進(jìn)甲種商品的件數(shù)與用900元購(gòu)進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設(shè)銷售完100件甲、乙兩種商品的總利潤(rùn)為w元,求wa之間的函數(shù)關(guān)系式,并求出w的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點(diǎn)C,連接AC,OD交于點(diǎn)E.

(1)證明:ODBC;

(2)若tanABC=2,證明:DA與⊙O相切;

(3)在(2)條件下,連接BD交于⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,過點(diǎn)B作直線EFAC,又知∠ACB=∠BDC60°,ACcm

1)請(qǐng)?zhí)骄?/span>EF與⊙O的位置關(guān)系,并說明理由;

2)求⊙O的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtΔABCC90°ABC30°,ΔABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得ΔA1B1C,當(dāng)A1落在AB上時(shí),連接B1B,取B1B的中點(diǎn)D,連接A1D,則的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.

1)請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案