精英家教網 > 初中數學 > 題目詳情

【題目】某校九年級10個班級師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)唱歌類節(jié)目數比舞蹈類節(jié)目數的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘,若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?

【答案】
(1)

解:設九年級師生表演的歌唱類節(jié)目有x個,舞蹈類節(jié)目有y個,

根據題意,得: ,解得: ,

答:九年級師生表演的歌唱類節(jié)目有12個,舞蹈類節(jié)目有8個;


(2)

解:設參與的小品類節(jié)目有a個,

根據題意,得:12×5+8×6+8a+15<150,

解得:a< ,

由于a為整數,

∴a=3,

答:參與的小品類節(jié)目最多能有3個.


【解析】(1)設九年級師生表演的歌唱類節(jié)目有x個,舞蹈類節(jié)目有y個,根據“兩類節(jié)目的總數為20個、唱歌類節(jié)目數比舞蹈類節(jié)目數的2倍少4個”列方程組求解可得;
(2)設參與的小品類節(jié)目有a個,根據“三類節(jié)目的總時間+交接用時<150”列不等式求解可得.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,地面上小山的兩側有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達C處,此時熱氣球上的人測得CB與AB成70°角,請你用測得的數據求A,B兩地的距離AB長.(結果用含非特殊角的三角函數和根式表示即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點A順時針旋轉90°,使點E落在點E'處,則下列判斷不正確的是(
A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】九 (1)班48名學生參加學校舉行的“珍惜生命,遠離毒品”只是競賽初賽,賽后,班長對成績進行分析,制作如下的頻數分布表和頻數分布直方圖(未完成).余下8名學生成績尚未統(tǒng)計,這8名學生成績如下:60,90,63,99,67,99,99,68. 頻數分布表

分數段

頻數(人數)

60≤x<70

a

70≤x<80

16

80≤x<90

24

90≤x<100

b


請解答下列問題:
(1)完成頻數分布表,a= , b=
(2)補全頻數分布直方圖;
(3)全校共有600名學生參加初賽,估計該校成績90≤x<100范圍內的學生有多少人?
(4)九 (1)班甲、乙、丙三位同學的成績并列第一,現(xiàn)選兩人參加決賽,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電視臺在它的娛樂性節(jié)目中每期抽出兩名場外幸運觀眾,有一期甲、乙兩人被抽為場外幸運觀眾,他們獲得了一次抽獎的機會,在如圖所示的翻獎牌的正面4個數字中任選一個,選中后翻開,可以得到該數字反面的獎品,第一個人選中的數字第二個人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機”的概率是多少?
(2)小亮同學說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機”的概率不同,且甲獲得“手機”的概率更大些.你同意小亮同學的說法嗎?為什么?請用列表或畫樹狀圖分析.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點,線段BE的垂直平分線交邊BC于點D.設BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC內接于⊙O,點C在劣弧AB上(不與點A,B重合),點D為弦BC的中點,DE⊥BC,DE與AC的延長線交于點E,射線AO與射線EB交于點F,與⊙O交于點G,設∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,

(1)點點同學通過畫圖和測量得到以下近似數據:

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關于ɑ的函數表達式,γ關于ɑ的函數表達式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們規(guī)定:一個正n邊形(n為整數,n≥4)的最短對角線與最長對角線長度的比值叫做這個正n邊形的“特征值”,記為λn , 那么λ6=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作⊙O的切線DE,交AC于點E,AC的反向延長線交⊙O于點F.
(1)求證:DE⊥AC;
(2)若DE+EA=8,⊙O的半徑為10,求AF的長度.

查看答案和解析>>

同步練習冊答案