△ABC三邊的長a、b、c都是整數(shù),a>b>c,a=8,則滿足條件的三角形共有個.


  1. A.
    8
  2. B.
    9
  3. C.
    10
  4. D.
    以上都不對
B
分析:結合三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”和已知條件,進行分析.
解答:根據(jù)已知條件和三角形的三邊關系,得
當a=8,b=7時,則c=6或5或4或3或2;
當a=8,b=6時,則c=5或4或3;
當a=8,b=5時,則c=4.
故選B.
點評:此題要能夠把已知條件和三角形的三邊關系結合起來考慮.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若a、b、c是△ABC的三邊,且a、b滿足關系式|a-3|+(b-4)2=0,c是不等式組
x-1
3
>x-4
2x+3<
6x+1
2
的最大整數(shù)解,求△ABC三邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
5
a
2
2
a
、
17
a
(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
、2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊長都是整數(shù),且△ABC外接圓的直徑為6.25,那么△ABC三邊的長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題:在△ABC中,AB、BC、AC三邊的長分別為
2
、
13
、
17
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖所示,這樣不需求△ABC的高,而借用網格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上
5
2
5
2

(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
2
a、2
5
a、
26
a
(a>0),請利用圖2的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積是:
3a2
3a2

(3)若△ABC三邊的長分別為
4m2+n2
16m2+n2
、2
m2+n2
(m>0,n>0,m≠n),請運用構圖法在圖3指定區(qū)域內畫出示意圖,并求出△ABC的面積為:
4mn
4mn

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求此三角形的面積.小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:
3.5
3.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

查看答案和解析>>

同步練習冊答案