【題目】如圖,正方形中,經(jīng)順時針旋轉(zhuǎn)后與重合.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)了 度;
(2)如果,,求的長.
【答案】(1)A,90;(2).
【解析】
(1)根據(jù)正方形的性質(zhì)得AB=AD,∠BAD=90°,則根據(jù)旋轉(zhuǎn)的定義得到△ADE繞點A順時針旋轉(zhuǎn)90°后與△ABF重合;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得BF=DE,S△ABF=S△ADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可計算出BC=6,于是得到結(jié)論.
解:(1)∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∴△ADE繞點A順時針旋轉(zhuǎn)90°后與△ABF重合,
即旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)了90度;
故答案為A,90;
(2)∵△ADE繞點A順時針旋轉(zhuǎn)90°后與△ABF重合,
∴BF=DE,S△ABF=S△ADE,
而CF=CB+BF=8,
∴BC+DE=8,
∵CE=CD-DE=BC-DE=4,
∴BC=6,
∴AC= BC=6.
故答案為:(1)A,90;(2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新農(nóng)村樂園設(shè)置了一個秋千場所,如圖所示,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計算結(jié)果精確到0.1m)
(1)當擺繩OA與OB成45°夾角時,恰為兒童的安全高度,則h= m
(2)某成人在玩秋千時,擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+4經(jīng)過點(2,4),(-2,-2),交y軸于點A,過點A作AB⊥y軸交拋物線于點B.
(1)求拋物線的解析式.
(2)將△OAB繞點O順時針旋轉(zhuǎn)90°得到△OA'B',試判斷B'是否落在拋物線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,以點A為圓心,2為半徑作圓,E是⊙A上的任意一點,將點E繞點D按逆時針方向轉(zhuǎn)轉(zhuǎn)90°得到點F,則線段AF的長的最小值____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過矩形OABC的對角線的交點M,分別與AB、BC相交于點D、E,則下列結(jié)論正確的是______(填序號).
①;②連接MD,S△ODM=2S△OCE,;③;④連接,則△BED∽△BCA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com