【題目】如圖,ABC是等邊三角形,ADBC邊上的高,EAC的中點,PAD上的一個動點,當(dāng)PCPE的和最小時,∠CPE的度數(shù)是_____________

【答案】60°

【解析】

連接BE,BE的長度即為PEPC和的最小值.再利用等邊三角形的性質(zhì)可得∠PBC=PCB=30°,即可解決問題.

如圖,連接BE,AD交于點P,此時PE+PC最小,

∵△ABC是等邊三角形,ADBC
PC=PB,
PE+PC=PB+PE=BE,
BE就是PE+PC的最小值,
∵△ABC是等邊三角形,
∴∠BCE=60°,
BA=BCAE=EC,
BEAC,
∴∠BEC=90°
∴∠EBC=30°,
PB=PC
∴∠PCB=PBC=30°,
∴∠CPE=PBC+PCB=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),ABCABC平移之后得到的圖,并且C的對應(yīng)點C的坐標(biāo)為(4,1)。

1A、B.兩點的坐標(biāo)分別為A      、B      

2)請作出ABC平移之后的圖形ABC;

3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CABC,垂足為C,AC2cm,BC6cm,射線BMBQ,垂足為B,動點PC點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PNAB,隨著P點運動而運動,當(dāng)點P運動_____秒時,△BCA與點P、N、B為頂點的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請同學(xué)們思考如下問題:

請利用直尺和圓規(guī)四等分弧AB.

小亮的作法如下:

如圖,

(1)連接AB;

(2)作AB的垂直平分線CD交弧AB于點M.交AB于點T;

(3)分別作線段AT,線段BT的垂直平分線EF,GH,交弧AB于N,P兩點;

那么N,M,P三點把弧AB四等分.

老師問:“小亮的作法正確嗎?”

請回備:小亮的作法_____(“正確”或“不正確”)理由是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+x軸、y軸分別交于點AB,在坐標(biāo)軸上找點P,使△ABP為等腰三角形,則點P的個數(shù)為( )

A. 2B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機經(jīng)銷商計劃同時購進(jìn)一批甲、乙兩種型號的手機,若購進(jìn)2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進(jìn)3部甲型號手機和2部乙型號手機,共需要資金4600元.

1)求甲、乙型號手機每部進(jìn)價為多少元;

2)該店計劃購進(jìn)甲、乙兩種型號的手機銷售,預(yù)計用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩部手機共20臺;若售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1180元.為了獲得最多的利潤,應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以邊AB為直徑作⊙O,交BC于點D,過D作DE⊥AC于點E.

(1)求證:DE為⊙O的切線;
(2)若AB=13,sinB= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸于A,交y軸于B,過B,且,點C在第四象限,點

求點AB,C的坐標(biāo);

M是直線AB上一動點,當(dāng)最小時,求點M的坐標(biāo);

P、Q分別在直線ABBC上,是以RQ為斜邊的等腰直角三角形直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一場活動中活動主辦方為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩紀(jì)念品發(fā)放其中甲種紀(jì)念品每件售價120元,乙種紀(jì)念品每件售價80元,

1)如果購買甲、乙兩種紀(jì)念品一共花費了9600元,求購買甲、乙兩種紀(jì)念品各是多少件?

2)設(shè)購買甲種紀(jì)念品m件,如果購買乙種紀(jì)念品的件數(shù)不超過甲種紀(jì)念品的數(shù)量的2倍,并且總費用不超過9400元.問組委會購買甲、乙兩種紀(jì)念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?

查看答案和解析>>

同步練習(xí)冊答案