【題目】如圖,在△ABC 中,∠ C=90°,AC=5,BC=12,D 是 BC 邊的中點(diǎn).
(1)尺規(guī)作圖:過點(diǎn) D 作 DE⊥AB 于點(diǎn) E;(保留作圖痕跡,不寫做法)
(2)求 DE 的長
【答案】(1)見解析;(2)
【解析】
(1)以點(diǎn)D為圓心作一段弧交AB于兩點(diǎn),以這兩點(diǎn)為圓心,分別作圓弧交于一點(diǎn),將D與該點(diǎn)連接即可求作出E;
(2)由勾股定理可求出AB=13,又易證△ACB∽△DEB,從而可知,化簡即可求出DE的長度.
解:(1)以點(diǎn)D為圓心作一段弧交AB于兩點(diǎn),以這兩點(diǎn)為圓心,分別作圓弧交于一點(diǎn),將D與該點(diǎn)連接即可求作出E,如圖所示:
(2)∵點(diǎn)D為BC中點(diǎn),
∴,
又∵在Rt△ACB中,∠C=90°,AC=5,BC=12,
∴AB=13,
又∵∠C=∠DEB=90°,∠B=∠B,
∴△ACB∽△DEB,
∴,
∴,即DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角形的外接圓半徑為6,內(nèi)切圓半徑為2,那么這個(gè)三角形的面積是( 。
A.32B.34C.27D.28
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一圓柱鐵桶內(nèi)底面的點(diǎn)處有一飛蟲,在其上邊沿的點(diǎn)處有一面包殘?jiān),已?/span>是點(diǎn)正下方的桶內(nèi)底面上一點(diǎn),已知劣弧的長為,鐵桶的底面直徑為,桶高為60cm,則該飛蟲從點(diǎn)到達(dá)的最短路徑是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,,,四邊形均為平行四邊形,且點(diǎn)分別落在上.
(1)若的周長為16,用含的代數(shù)式來表示的面積,并求出的最大值;
(2)若四邊形均為矩形,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).點(diǎn)是射線上一點(diǎn),過點(diǎn)作直線,與軸右側(cè)的拋物線交于點(diǎn).點(diǎn)從點(diǎn)出發(fā),沿射線以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.請(qǐng)解答下列問題:
(1)求直線AC的表達(dá)式與點(diǎn)的坐標(biāo);
(2)在點(diǎn)運(yùn)動(dòng)的過程中,若以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,求運(yùn)動(dòng)的時(shí)間;
(3)設(shè)點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,
①點(diǎn)的坐標(biāo)為 (用含的代數(shù)式表示,結(jié)果需化簡);
②當(dāng)點(diǎn)落在拋物線的對(duì)稱軸上且點(diǎn)在線段上時(shí),在平面內(nèi)是否存在點(diǎn)F,使得以點(diǎn),,,F為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E是AD邊上一點(diǎn),連接CE,交對(duì)角線BD于點(diǎn)F,過點(diǎn)A作AB的垂線交BD的延長線于點(diǎn)G,過B作BH垂直于CE,垂足為點(diǎn)H,交CD于點(diǎn)P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的長;
(2)若BC=FC,求證:GF=PC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正三角形的一邊平行于軸,一頂點(diǎn)在軸上,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點(diǎn)依次用表示,其中與軸、底邊與與、…均相距一個(gè)單位,則頂點(diǎn)的坐標(biāo)是__________,的坐標(biāo)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com