【題目】如圖,一艘輪船以30海里/小時的速度由西向東航行,途中接到臺風警報,臺風中心正以60海里/小時的速度由南向北移動,距臺風中心20海里的圓形區(qū)域(包括邊界)都屬于臺風區(qū),當輪船到A處時,測得臺風中心移到位于點A正南方向的B處,且AB=40海里.

1)若輪船以原方向、原速度繼續(xù)航行:

①船長發(fā)現(xiàn),當臺風中心到達A處時,輪船肯定受影響,為什么?

②求輪船從A點出發(fā)到最初遇到臺風的時間;

2)若輪船在A處迅速改變航線,向北偏東60°的方向的避風港以30海里/小時的速度駛去,輪船還會不會受到影響?若會,試求輪船最初遇到臺風的時間;若不會,請說明理由.

【答案】1會受影響,理由見解析;輪船從A點出發(fā)到最初遇到臺風的時間是小時;(2)輪船從A點出發(fā)到最初遇到臺風的時間是小時.

【解析】試題分析:(1)①求出當臺風中心到達A處時,所用時間,進而求出輪船此時駛離A處距離,比較即可;

②當輪船在t小時后到達A1時,最初遇到臺風,此時臺風中心到達B1,進而表示出各線段長,再利用勾股定理求出即可;

(2)當輪船在m時后到達A2時,最初遇到臺風,此時臺風中心到達B2,進而得出A2B2=20,A2A=30m,AB2=60m-40,作A2EAB2,垂足為E,則A2E=15m,AE=15m,EB2=AE-AB2,再利用勾股定理求出即可.

試題解析:(1)①會受影響,

當臺風中心到達A處時,用時: (小時),

則輪船此時駛離A處:30×=20(海里),因此輪船肯定受影響;

如圖1,若輪船在t小時后到達A1時,最初遇到臺風,此時臺風中心到達B1,

A1B1=20海里,A1A=30t,AB1=40﹣60t,

由勾股定理知,(30t)2+(40﹣60t)2=202,

解得:t1=,t2=

則輪船從A點出發(fā)到最初遇到臺風的時間是小時;

(2)會,理由:如圖2,若輪船在m時后到達A2時,最初遇到臺風,此時臺風中心到達B2,則A2B2=20,A2A=30m,AB2=60m﹣40,作A2EAB2,垂足為E,則A2E=30m ×sin60°=15

m,AE=15m,EB2=AE﹣AB2=15m﹣(60m﹣40)=40﹣45m,

由勾股定理得:(15m)2+(40﹣45m)2=202

解得:m1=m2=,

則輪船從A點出發(fā)到最初遇到臺風的時間是小時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】點 M(3,2)關于 y 軸對稱的點的坐標為(

A. (﹣3,2) B. (﹣3,﹣2) C. (3,﹣2) D. (2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+kx+2k﹣4

1)當k=2時,求出此拋物線的頂點坐標;

2)求證:無論k為任何實數(shù),拋物線都與x軸有交點,且經(jīng)過x軸一定點;

3)已知拋物線與x軸交于Ax10)、Bx2,0)兩點(AB的左邊),|x1||x2|,與y軸交于C點,且SABC=15.問:過A,B,C三點的圓與該拋物線是否有第四個交點?試說明理由.如果有,求出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的方程mxm2﹣m+3=0是一元一次方程,則這個方程的解是(  )
A.x=0
B.x=3
C.x=﹣3
D.x=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,若點A(﹣2,n),B(1,﹣2)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求直線AB與x軸的交點C的坐標;

(3)求點O到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮的儲蓄罐里有面值5角和1元的兩種硬幣,共20 ,合計15元,面值5角的有______枚,1元的有______枚。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果|a|=-a,下列各式成立的是(  )

A. a0B. a0

C. a0D. a0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四舍五入法對31500取近似數(shù),并精確到千位,用科學計數(shù)法可表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關于x的方程x2-3x+1=0x≠0)方程兩邊同時乘以得: ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ = ______ , = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

同步練習冊答案