【題目】 推理填空
已知:如圖所示,點(diǎn)B,C,E在同一條直線上,AB∥CD,∠1=∠2,∠3=∠4,求證:AD∥BE
證明:∵AB∥CD(已知)
∴∠4=∠______(______)
∵∠3=∠4(已知)∴∠3=∠______(______)
∴∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì))
即∠BAF=∠DAC
∴∠3=∠______(等量代換)
∴AD∥BE(______)
【答案】BAE;兩直線平行,同位角相等;BAE;等量代換;DAC;內(nèi)錯(cuò)角相等,兩直線平行.
【解析】
根據(jù)已知條件和解題思路,利用平行線的性質(zhì)和判定填空.
解:AD∥BE,理由如下:
∵AB∥CD(已知),
∴∠4=∠BAE(兩直線平行,同位角相等);
∵∠3=∠4(已知),
∴∠3=∠BAE(等量代換);
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì)),
即∠BAF=∠DAC,
∴∠3=∠DAC(等量代換),
∴AD∥BE(內(nèi)錯(cuò)角相等,兩直線平行).
故答案為:BAE;兩直線平行,同位角相等;BAE;等量代換;DAC;內(nèi)錯(cuò)角相等,兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)E,F(xiàn)分別是拋物線對(duì)稱軸CH上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;
(3)如圖2,點(diǎn)P為對(duì)稱軸左側(cè),x軸上方的拋物線上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ與△ACH相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)從A地開(kāi)往B地,全程800km;所行的路程與時(shí)間的函數(shù)圖像如圖所示,下列問(wèn)題:①乙車(chē)比甲車(chē)早出發(fā)2h;②甲車(chē)追上乙車(chē)時(shí)行駛了300km;③乙車(chē)的速度小于甲車(chē)速度;④甲車(chē)跑完全程比乙車(chē)跑完全程少用3h;以上正確的序號(hào)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為正六邊形ABCDEF的中心,點(diǎn)M為AF中點(diǎn),以點(diǎn)O為圓心,以OM的長(zhǎng)為半徑畫(huà)弧得到扇形MON,點(diǎn)N在BC上;以點(diǎn)E為圓心,以DE的長(zhǎng)為半徑畫(huà)弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 計(jì)算:
(1)2x3(-x)2-(-x2)2(-3x);
(2)(2x-5)(3x+2);
(3);
(4)用乘法公式簡(jiǎn)便計(jì)算:2002-400×199+1992
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知D,E分別為△ABC的邊AB,BC上兩點(diǎn),點(diǎn)A,C,E在⊙D上,點(diǎn)B,D在⊙E上.F為上一點(diǎn),連接FE并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)N,交AB于點(diǎn)M.
(1)若∠EBD為α,請(qǐng)將∠CAD用含α的代數(shù)式表示;
(2)若EM=MB,請(qǐng)說(shuō)明當(dāng)∠CAD為多少度時(shí),直線EF為⊙D的切線;
(3)在(2)的條件下,若AD=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點(diǎn),過(guò)點(diǎn)B的直線y=kx+分別與y軸及拋物線交于點(diǎn)C,D.
(1)求直線和拋物線的表達(dá)式;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在x軸的負(fù)半軸上以每秒1個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),△PDC為直角三角形?請(qǐng)直接寫(xiě)出所有滿足條件的t的值;
(3)如圖2,將直線BD沿y軸向下平移4個(gè)單位后,與x軸,y軸分別交于E,F(xiàn)兩點(diǎn),在拋物線的對(duì)稱軸上是否存在點(diǎn)M,在直線EF上是否存在點(diǎn)N,使DM+MN的值最小?若存在,求出其最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的電費(fèi),分兩檔收費(fèi):第一檔是當(dāng)月用電量不超過(guò)240度時(shí)實(shí)行“基礎(chǔ)電價(jià)”;第二檔是當(dāng)用電量超過(guò)240度時(shí),其中的240度仍按照“基礎(chǔ)電價(jià)”計(jì)費(fèi),超過(guò)的部分按照“提高電價(jià)”收費(fèi).設(shè)每個(gè)家庭月用電量為x 度時(shí),應(yīng)交電費(fèi)為y 元.具體收費(fèi)情況如折線圖所示,請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)“基礎(chǔ)電價(jià)”是____________元 度;
(2)求出當(dāng)x>240 時(shí),y與x的函數(shù)表達(dá)式;
(3)若紫豪家六月份繳納電費(fèi)132元,求紫豪家這個(gè)月用電量為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)一質(zhì)點(diǎn)M自P0(1,0)處向上運(yùn)動(dòng)1個(gè)單位至P1(1,1),然后向左運(yùn)動(dòng)2個(gè)單位至P2處,再向下運(yùn)動(dòng)3個(gè)單位至P3處,再向右運(yùn)動(dòng)4個(gè)單位至P4處,再向上運(yùn)動(dòng)5個(gè)單位至P5處,……如此繼續(xù)運(yùn)動(dòng)下去.設(shè)Pn(xn,yn),n=1、2、3、……,則x1+x2+……+x2014+x2015的值為( )
A. 1 B. 3 C. -1 D. 2015
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com