【題目】美化城市,改善人民居住環(huán)境是城市建設(shè)的一項重要內(nèi)容.北京市將重點圍繞城市副中心、大興國際機場、冬奧會、世園會、永定河、溫榆河、南中軸等重要節(jié)點區(qū)域綠化,到2022年,全市將真正形成一片集萬畝城市森林、百萬喬灌樹木、百種鄉(xiāng)土植物、二十四節(jié)氣林窗、四季景觀大道于一體的城市森林.2018年當(dāng)年計劃新增造林23萬畝,2019年計劃新增造林面積大體相當(dāng)于27.8個奧森公園的面積,預(yù)計2020年計劃新增造林面積達(dá)到38.87萬畝,求2018年至2020年計劃新增造林面積的年平均增長率.

【答案】2018年至2019年計劃新增造林面積的年平均增長率為

【解析】

增長率問題,一般用增長后的量=增長前的量×(1+增長率)列出方程.

解:設(shè)2018年至2020年計劃新增造林面積的年平均增長率為,

根據(jù)題意,得

(舍去)

答:2018年至2019年計劃新增造林面積的年平均增長率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D-1,2),與x軸的一個交點A在點(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac0②當(dāng)x-1yx增大而減。虎a+b+c0;④若方程ax2+bx+c-m=0沒有實數(shù)根,則m23a+c0.其中,正確結(jié)論的序號是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A0,3)、B3,4)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是

2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點C2的坐標(biāo)是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測點P處,以22°的仰角測得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面3米高的E處,測得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度.(參考數(shù)據(jù):sin22° ,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和1個B品牌的計算器共需122元;購買1個A品牌和2個B品牌的計算器共需124元.

(1)求這兩種品牌計算器的單價;

(2)學(xué)校開學(xué)前夕,該商店舉行促銷活動,具體辦法如下:購買A品牌計算器按原價的九折銷售,購買B品牌計算器超出10個以上超出的部分按原價的八折銷售,設(shè)購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;

小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購買同一品牌的計算器,若購買計算器的數(shù)量超過10個,問購買哪種品牌的計算器更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,分別是的中點.

求證:四邊形是菱形

如果,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起點A與點E重合),已知AC8 cm,BC6 cm,∠C90°,EG4 cm,∠EGF90°,O是△EFG斜邊上的中點. 如圖乙,若整個△EFG從圖甲的位置出發(fā),以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā)以1 cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達(dá)點F時,點P停止運動,△EFG也隨之停止平移. 設(shè)運動時間為x(s),FG的延長線交AC于H四邊形OAHP的面積為y(cm2)(提示:不考慮點P與G、F重合的情況).

(1)當(dāng)x為何值時,OP∥AC?

(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中, ,對角線平分.

1)如圖1,若,且,試探究邊、與對角線的數(shù)量關(guān)系并說明理由.

2)如圖2,若將(1)中的條件去掉,(1)中的結(jié)論是否成立?請說明理由.

3)如圖3,若,探究邊與對角線的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

同步練習(xí)冊答案