某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具體關(guān)系式為:,且物價(jià)部門規(guī)定這種綠茶的銷售單價(jià)不得高于90元/千克.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤為(元),解答下列問題:
(1)求的關(guān)系式;
(2)當(dāng)取何值時(shí),的值最大?
(3)如果公司想要在這段時(shí)間內(nèi)獲得2 250元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
(1) y=-2x2+340x-12000;(2)85;(3)75.

試題分析:(1)利用每千克銷售利潤×銷售量=總銷售利潤列出函數(shù)關(guān)系式,整理即可解答;
(2)利用配方法可求最值;
(3)把函數(shù)值代入,解一元二次方程解決問題.
試題解析:(1)y=(x-50)•w=(x-50)•(-2x+240)=-2x2+340x-12000,
因此y與x的關(guān)系式為:y=-2x2+340x-12000.
(2)y=-2x2+340x-12000=-2(x-85)2+2450,
∴當(dāng)x=85時(shí),在50<x≤90內(nèi),y的值最大為2450.
(3)當(dāng)y=2250時(shí),可得方程-2(x-85)2+2450=2250,
解這個(gè)方程,得x1=75,x2=95;
根據(jù)題意,x2=95不合題意應(yīng)舍去.
答:當(dāng)銷售單價(jià)為75元時(shí),可獲得銷售利潤2250元.
考點(diǎn): 二次函數(shù)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,二次函數(shù)的圖像經(jīng)過點(diǎn)和點(diǎn)B,其中點(diǎn)B在第一象限,且OA=OB,cot∠BAO=2.

(1)求點(diǎn)B的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)過點(diǎn)B作直線BC平行于x軸,直線BC與二次函數(shù)圖像的另一個(gè)交點(diǎn)為C,聯(lián)結(jié)AC,如果點(diǎn)P在x軸上,且△ABC和△PAB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,2),連接AC,若tan∠OAC=2.

(1)求拋物線對應(yīng)的二次函數(shù)的解析式;
(2)在拋物線的對稱軸l上是否存在點(diǎn)P,使∠APC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)如圖所示,連接BC,M是線段BC上(不與B、C重合)的一個(gè)動點(diǎn),過點(diǎn)M作直線l′∥l,交拋物線于點(diǎn)N,連接CN、BN,設(shè)點(diǎn)M的橫坐標(biāo)為t.當(dāng)t為何值時(shí),△BCN的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售:①若只在國內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤為W內(nèi)(元);②若只在國外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),月利潤為W(元).
(1)若只在國內(nèi)銷售,當(dāng)x=1000(件)時(shí),y=         (元/件);
(2)分別求出W內(nèi)、W與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

動物園計(jì)劃用長為120米的鐵絲圍成如圖所示的兔籠,(不包括頂棚)供學(xué)習(xí)小組的同學(xué)參觀,其中一面靠墻,(墻足夠長)怎樣設(shè)計(jì)圍成的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+2x+c與其對稱軸相交于點(diǎn)A(1,4),與x軸正半軸交于點(diǎn)B.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)在拋物線對稱軸上確定一點(diǎn)C,使△ABC是等腰三角形,求出所有點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),已知點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;
(2)聯(lián)結(jié)AB,過點(diǎn)作線段的垂線交拋物線于點(diǎn),如果以點(diǎn)為圓心的圓與拋物線的對稱軸相切,先補(bǔ)全圖形,再判斷直線與⊙的位置關(guān)系并加以證明;
(3)已知點(diǎn)是拋物線上的一個(gè)動點(diǎn),且位于,兩點(diǎn)之間.問:當(dāng)點(diǎn)運(yùn)動到什么位置時(shí),的面積最大?求出的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正常水位時(shí),拋物線拱橋下的水面寬為BC=20m,水面上升3m達(dá)到該地警戒水位DE時(shí),橋下水面寬為10m.若以BC所在直線為x軸,BC的垂直平分線為y軸,建立如圖所示的平面直角坐標(biāo)系.

(1)求橋孔拋物線的函數(shù)關(guān)系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達(dá)到警戒水位后,再過多長時(shí)間此橋孔將被淹沒;
(3)當(dāng)達(dá)到警戒水位時(shí),一艘裝有防汛器材的船,露出水面部分的寬為4m,高為0.75m,通過計(jì)算說明該船能否順利通過此拱橋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是(    )
A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)

查看答案和解析>>

同步練習(xí)冊答案