如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為         


24n-5

【解析】

試題分析:根據(jù)直線解析式判斷出直線與x軸的夾角為45°,從而得到直線與正方形的邊圍成的三角形是等腰直角三角形,再根據(jù)點(diǎn)A的坐標(biāo)求出正方形的邊長并得到變化規(guī)律表示出第n個(gè)正方形的邊長,然后根據(jù)陰影部分的面積等于一個(gè)等腰直角三角形的面積加上梯形的面積再減去一個(gè)直角三角形的面積列式求解并根據(jù)結(jié)果的規(guī)律解答即可.

解:∵函數(shù)y=x與x軸的夾角為45°,

∴直線y=x與正方形的邊圍成的三角形是等腰直角三角形,

∵A(8,4),

∴第四個(gè)正方形的邊長為8,

第三個(gè)正方形的邊長為4,

第二個(gè)正方形的邊長為2

第一個(gè)正方形的邊長為1,

…,

第n個(gè)正方形的邊長為2n-1,

由圖可知,S1=×1×1+×(1+2)×2-×(1+2)×2=,

S2=×4×4+×(2+4)×4-×(2+4)×4=8,

…,

Sn為第2n與第2n-1個(gè)正方形中的陰影部分,

第2n個(gè)正方形的邊長為22n-1,第2n-1個(gè)正方形的邊長為22n-2,

Sn=•22n-2•22n-2=24n-5

【難度】較難


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD為矩形,過點(diǎn)D作對角線BD的垂線,交BC的延長線于點(diǎn)E,取BE的中點(diǎn)F,連接DF,DF=4.設(shè)AB=x,AD=y,則的值為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知點(diǎn)E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),若AC⊥BD,且AC≠BD,則四邊形EFGH的形狀是    .(填“梯形”、“矩形”或“菱形”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,A、B是第二象限內(nèi)雙曲線y=上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點(diǎn)C,若S△AOC=6,則k的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知一組數(shù)據(jù)1,2,3,4,5的方差為2,則另一組數(shù)據(jù)11,12,13,14,15的方差為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


為了從甲、乙兩名選手中選拔一個(gè)參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了統(tǒng)計(jì)表和統(tǒng)計(jì)圖:

甲、乙射擊成績統(tǒng)計(jì)表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

0

1

(1)請補(bǔ)全上述圖表(直接在表中填空和補(bǔ)全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


觀察下列等式:

;

……

回答下列問題:

(1)仿照上列等式,寫出第n個(gè)等式:                                    

(2)利用你觀察到的規(guī)律,化簡:;

(3)計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(2,a)(a>0),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,將線段AB沿x軸正方向平移,與反比例函數(shù)y=(x>0)的圖象相交于點(diǎn)F(p,q).

(1)當(dāng)F點(diǎn)恰好為線段的中點(diǎn)時(shí),求直線AF的解析式 (用含a的代數(shù)式表示);

(2)若直線AF分別與x軸、y軸交于點(diǎn)M、N,當(dāng)q=-a2+5a時(shí),令S=SANO+SMFO(其中O是原點(diǎn)),求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將405 000 000用科學(xué)記數(shù)法為___________ .

查看答案和解析>>

同步練習(xí)冊答案