【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點M,BE⊥CD于點E.
(1)求證:∠BME=∠MAB;
(2)求證:BM2=BEAB;
(3)若BE=,sin∠BAM=,求線段AM的長.
【答案】(1)詳見解析;(2)詳見解析;(3)8.
【解析】試題分析:(1)由切線的性質(zhì)得出∠BME+∠OMB=90°,再由直徑得出∠AMB=90°,利用同角的余角相等判斷出結(jié)論;
(2)由(1)得出的結(jié)論和直角,判斷出△BME∽△BAM,即可得出結(jié)論,
(3)先在Rt△BEM中,用三角函數(shù)求出BM,再在Rt△ABM中,用三角函數(shù)和勾股定理計算即可.
試題解析:(1)如圖,連接OM,
∵直線CD切⊙O于點M,
∴∠OMD=90°,
∴∠BME+∠OMB=90°,
∵AB為⊙O的直徑,
∴∠AMB=90°.
∴∠AMO+∠OMB=90°,
∴∠BME=∠AMO,
∵OA=OM,
∴∠MAB=∠AMO,
∴∠BME=∠MAB;
(2)由(1)有,∠BME=∠MAB,
∵BE⊥CD,
∴∠BEM=∠AMB=90°,
∴△BME∽△BAM,
∴
∴BM2=BEAB;
(3)由(1)有,∠BME=∠MAB,
∵sin∠BAM=,
∴sin∠BME=,
在Rt△BEM中,BE=,
∴sin∠BME==,
∴BM=6,
在Rt△ABM中,sin∠BAM=,
∴sin∠BAM==,
∴AB=BM=10,據(jù)勾股定理得,AM=8.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
我們把滿足某種條件的所有點所組成的圖形,叫做符合這個條件的點的軌跡.
例如:角的平分線是到角的兩邊距離相等的點的軌跡.
問題:如圖1,已知EF為△ABC的中位線,M是邊BC上一動點,連接AM交EF于點P,那么動點P為線段AM中點.
理由:∵線段EF為△ABC的中位線,∴EF∥BC,
由平行線分線段成比例得:動點P為線段AM中點.
由此你得到動點P的運動軌跡是: .
知識應用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動點,連結(jié)EF;若AF=BE,且等邊△ABC的邊長為8,求線段EF中點Q的運動軌跡的長.
拓展提高:
如圖3,P為線段AB上一動點(點P不與點A、B重合),在線段AB的同側(cè)分別作等邊△APC和等邊△PBD,連結(jié)AD、BC,交點為Q.
(1)求∠AQB的度數(shù);
(2)若AB=6,求動點Q運動軌跡的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學做了四道題:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3xy2=xy5 , 其中正確的題號是( )
A.②④
B.①③
C.①②
D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,數(shù)0.0000025用科學記數(shù)法表示為( )
A.25×10﹣7
B.2.5×10﹣6
C.0.25×10﹣5
D.2.5×10﹣7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列因式分解錯誤的是( )
A.2a3﹣8a2+12a=2a(a2﹣4a+6)
B.x2﹣5x+6=(x﹣2)(x﹣3)
C.(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c)
D.﹣2a2+4a﹣2=2(a+1)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電影《中國機長》首映當日票房已經(jīng)達到1.92億元,2天后當日票房達到2.61億元,設(shè)平均每天票房的增長率為x,則可列方程為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.
(1)當運動時間t為多少秒時,PQ∥CD.
(2)當運動時間t為多少秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com