【題目】在中,,點(diǎn),分別是邊,上的點(diǎn),點(diǎn)是一動(dòng)點(diǎn).記為,為,為.
(1)若點(diǎn)在線段上,且,如圖1,則_____________;
(2)若點(diǎn)在邊上運(yùn)動(dòng),如圖2所示,請猜想,,之間的關(guān)系,并說明理由;
(3)若點(diǎn)運(yùn)動(dòng)到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請直接寫出結(jié)論,不用說明理由.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)鄰補(bǔ)角的性質(zhì)可得∠1+∠2+∠PDC+∠PEC=360°,根據(jù)四邊形的內(nèi)角和等于360°可得∠PDC+∠PEC+∠C+∠α=360°,然后可得∠1+∠2=∠C+∠α;
(2)仿照(1)的解法,即可得到∠α,∠1,∠2之間的關(guān)系;
(3)根據(jù)三角形的外角性質(zhì)計(jì)算即可.
(1)∵∠1+∠PDC=180°,∠2+∠PEC=180°,
∴∠1+∠2+∠PDC+∠PEC=360°,
∵四邊形CDPE的內(nèi)角和是360°,
∴∠PDC+∠PEC+∠C+∠α=360°,
∴∠1+∠2=∠C+∠α=90°+50°=140°,
故答案為:140°;
(2)
理由:∵
∴
又∵四邊形的內(nèi)角和是
∴
∴
(3)由三角形的外角性質(zhì)可知,∠3=∠2+∠α,
∴∠1=90°+∠3=90°+∠2+∠α.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
①的解x= .
②的解x= .
③的解x= .
④的解x= .
…
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個(gè)方程及它們的解.
(2)請你用一個(gè)含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,點(diǎn)D在BC上,且AD=AE.
(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關(guān)系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要從甲、乙兩名同學(xué)中選出一名,代表班級參加射擊比賽,如圖是兩人最近10次射擊訓(xùn)練成績的折線統(tǒng)計(jì)圖.
(1)已求得甲的平均成績?yōu)?/span>8環(huán),求乙的平均成績;
(2)觀察圖形,直接指出甲,乙這10次射擊成績的方差s甲2,s乙2哪個(gè)大?
(3)如果其他班級參賽選手的射擊成績都在7環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?如果其他班級參賽選手的射擊成績都在9環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎在一張紙上畫一條數(shù)軸,并在數(shù)軸上標(biāo)出、、三個(gè)點(diǎn),點(diǎn)表示的數(shù)是,點(diǎn)在原點(diǎn)的右邊且與點(diǎn)相距個(gè)單位長度.
()點(diǎn)表示的數(shù)是__________.
()將這張紙對折,此時(shí)點(diǎn)與表示的點(diǎn)剛好重合,折痕與數(shù)軸交于點(diǎn),求點(diǎn)表示的數(shù).
()若點(diǎn)到點(diǎn)和點(diǎn)的距離之和為,求點(diǎn)所表示的數(shù).
()點(diǎn)和點(diǎn)同時(shí)從初始位置沿?cái)?shù)軸向左運(yùn)動(dòng),它們的速度分別是每秒個(gè)單位長度和每秒個(gè)單位長度,運(yùn)動(dòng)時(shí)間是秒.是否存在的值,使秒后點(diǎn)到原點(diǎn)的距離與點(diǎn)到原點(diǎn)的距離相等?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,求證:BD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度數(shù);
(2)若DG⊥AC,垂足為G,∠BAC=90°,試說明:DG平分∠ADC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組的解都小于1,若關(guān)于a的不等式組恰好有三個(gè)整數(shù)解.
(1)分別求出m與n的取值范圍;
(2)化簡:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com