如圖,已知AB是⊙O的直徑,BC是⊙O的切線(xiàn),切點(diǎn)為B,OC平行于弦AD,OA=2.
(1)求證:DC是⊙O的切線(xiàn);
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的長(zhǎng).

【答案】分析:(1)連接OD,由BC是⊙O的切線(xiàn)得到∠B=90°,然后證明△OCD≌△OCB,得到∠ODC=90°,
(2)根據(jù)題干條件證明△ADB∽△ODC,得到AD•OC的值,
(3)在Rt△ODC中,利用勾股定理即可解得CD的長(zhǎng).
解答:證明:(1)連接OD,
∵BC是⊙O的切線(xiàn),
∴∠B=90°,
∵AD∥OC,
∴∠1=∠3,∠2=∠4
∵OA=OD,
∴∠2=∠3=∠1=∠4,
∵OB=OD,OC=OC,
∴△OCD≌△OCB,
∴∠ODC=90°,又∵CD過(guò)半徑OD的外端點(diǎn)D,
∴DC是⊙O的切線(xiàn);(4分)

(2)連接BD,
∵OC∥AD∴∠1=∠3=∠2,
又∠ADB=∠ODC=90°,
∴△ADB∽△ODC,
,
AD•OC=OD•AB=8;(8分)

(3)∵AD•OC=8,AD+OC=9,
∴AD=1,OC=8或AD=8,OC=1(不合題意,舍去),
.(12分)
點(diǎn)評(píng):本題考查了切線(xiàn)的判定,相似三角形的判定和性質(zhì)等知識(shí)點(diǎn).要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線(xiàn)上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線(xiàn),并說(shuō)明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,交⊙O的切線(xiàn)BE于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:DF是⊙O的切線(xiàn);
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線(xiàn)AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線(xiàn)CD與AB的延長(zhǎng)線(xiàn)交于點(diǎn)E.
(1)求證:直線(xiàn)CD為圓O的切線(xiàn).
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷