【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.
【答案】15°
【解析】∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,
∴∠DBC=∠ABC,∠DCB=∠ACB,
∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,
∴∠MBC+∠NCB=360°-60°=300°,
∵BE、CE分別平分∠MBC、∠BCN,
∴∠5+∠6=∠MBC,∠1=∠NCB,
∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,
∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,
∵BF、CF分別平分∠EBC、∠ECQ,
∴∠5=∠6,∠2=∠3+∠4,
∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,
即∠2=∠5+∠F,2∠2=2∠5+∠E,
∴2∠F=∠E,
∴∠F=∠E=×30°=15°.
故答案是:15°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了綠化小區(qū),某物業(yè)公司要在形如五邊形ABCDE的草坪上建一個矩形花壇PKDH.
已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直線為x軸,AE所在直線為y軸,建立平面直角坐標系,坐標原點為O.
(1)求直線AB的解析式.
(2)若設點P的橫坐標為x,矩形PKDH的面積為S,求S關于x的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某集團購買了150噸物資打算運往某地支援,現(xiàn)有甲、乙、丙三種車型供選擇,每輛汽車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 1000 | 1200 | 1500 |
(1)若全部物資都用甲、乙兩種車型來運送,需運費24000元,問分別需甲、乙兩種車型各多少輛?
(2)若該集團決定用甲、乙、丙三種汽車共18輛同時參與運送,請你寫出可能的運送方案,并幫助該集團找出運費最省的方案(甲、乙、丙三種車輛均要參與運送).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫的條數(shù)為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的頂點坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)將△ABC向右平移3個單位得到△A1B1C1,請畫出平移后的△A1B1C1;
(2)將△A1B1C1沿x軸翻折得到△A2B2C2,請畫出翻折后的△A2B2C2;
(3)若點P(m,n)是△ABC內(nèi)一點,點Q是△A2B2C2內(nèi)與點P對應的點,則點Q坐標______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種商品A的零售價為每件900元,為了適應市場競爭,商店按零售價的九折優(yōu)惠后,再讓利40元銷售,仍可獲利10%.
(1)這種商品A的進價為多少元?
(2)現(xiàn)有另一種商品B進價為600元,每件商品B也可獲利10%.對商品A和B共進貨100件,要使這100件商品共獲純利6670元,則需對商品A、B分別進貨多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一項工程,甲單獨做需要10天能完成,乙單獨做需要15天能完成,甲做一天需要的報酬比乙做一天需要的報酬多100元,甲、乙合作完成此項工程需要5400元報酬.
(1)問甲、乙合作多少天能完成此項工程?
(2)求甲做一天需要的報酬;
(3)為了節(jié)省開支,應在甲單獨完成、乙單獨完成、甲乙合作完成這三種方案中選擇哪種方案?請通過計算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com